STORMWATER MANAGEMENT PLAN Tax Map 31 Lot 48 Tax Map 33 Lot 18 Kearsarge Mountain Road Warner, NH

STORMWATER MANAGEMENT REPORT

PROPOSED RESIDENTIAL DEVELOPMENT KEARSARGE MOUNTAIN ROAD WARNER, NH

June 28, 2023 February 21, 2024 July 24, 2024

PREPARED FOR:

Sydney Elizabeth Boyer Kearsarge Mountain Road Warner NH 03278

PREPARED BY:

Jon Rokeh, P.E. Rokeh Consulting, LLC 89 King Road, Chichester, NH Phone: 603-387-8688

INDEX

INTRODUCTION

EXISTING CONDITIONS

PROPOSED CONDITIONS

METHODOLOGY

SUMMARY

USGS

AERIAL & SITE PHOTOS

NRCS WEBB SOIL SURVEY

SSSNNE PUBLICATION #5

NORTHEAST REGIONAL CLIMATE CENTER

BMP WORK SHEETS

OUTLET PROTECTION

PREDEVELOPMENT DRAINAGE CALCULATIONS

POST DEVELOPMENT DRAINAGE CALCULATIONS

OPERATION AND MAINTENANCE PLAN

INTRODUCTION

The proposed project is located on Map 33 Lot 18 off of Kearsarge Mountain Road in Warner NH. The lot is a 10+ acre parcel moderately sloping and wooded parcel of land.

The project consists of a 24 foot roadway 700 feet long and ending in a culdesac turn around. The roadway will provide access to 4 new single family lots. The lots will be serviced municipal sewer and water. The total area disturbed during construction of the road is approximately 68,000 SF.

The intent of this drainage report is to provide calculations for the proposed drainage improvements and evaluate pre and post development conditions in accordance with the Town of Warner Subdivision Regulations and NHDES requirements.

EXISTING CONDITIONS

The property is currently a undeveloped moderately sloping wood lot with some small areas of wetland along the frontage and to the west of the proposed developed area. On average the slopes vary from 3 to 25%. The entire property was mapped as 55C Hermon sandy loam series with 8% to 25% slopes as derived from NRCS Web Soil Survey.

The property has 2 distinct flow patterns as shown on the predevelopment drainage area plan. Design node 1 is in the southerly corner of the lot where the existing drainage from the wetland noted above flows in the corner of the lot and under Kearsarge Mt Road. The other Design node, node 2 is located in the easterly corner of the property with the existing drainage flowing from North to south into the exiting wetlands and then to the east as seen in the existing drainage area plan.

PROPOSED CONDITIONS

The proposed will consist of a 700+ foot roadway providing access and frontage to 4 new single family homes. The homes will be serviced by both municipal water and sewer. All of the stormwater generated from the site will be directed primarily by open drainage to two micro pool extended detention ponds and one infiltration trench located at CB2. The ponds will be preceded by forebays for sediment removal prior stormwater entering the ponds. The ponds have been design to treat the water quality volume before detaining and releasing the stormwater to the exiting site. Micro-pool ponds use extended detention and a wet micro pool for treatment. The ponds are located adjacent to wetlands making them ideal for this treatment condition. The one infiltration trench is located at CB 2 it consists of a 4'x6' stone trench with a perferorated pipe. A infiltration rate of 3 inches per hour is used. This rate is 50% of the slowest rate in the C horizon or 50% of 6 inches as depicted in SSSNNE Special Publication No. 5.

METHODOLOGY

The drainage analysis was completed using HydroCad Version 10.00-22, a stormwater modeling program utilizing TR-20 and TR-55 methodology. This program performs both the hydrologic

computations for determination of runoff flows, and the hydraulic calculations for pipe, ditch, and pond design. Calculations were performed for the 2, 10, 25 and 50-year frequency storms in accordance with Town and NHDES regulations.

The following design parameters were used:

Rainfall distribution:	Type III
2-year storm rainfall:	2.76 inches
10-year storm rainfall:	4.02 inches
25-year storm rainfall:	4.98 inches
50-year storm rainfall:	5.87 inches

FINDINGS:

Based on the results of this analysis we expect that the project will not adversely affect any downstream properties or receiving waters.

	CFS	CFS	CFS	CFS
	2 YEAR	10 YEAR	25 YEAR	50 YEAR
POA1				
Pre-Development	0.00	0.00	0.02	0.07
Post Development	0.00	0.00	0.00	0.06
POA2				
Pre-Development	0.00	0.00	0.03	0.14
Post Development	0.00	0.00	0.03	0.14

TAX MAP 33 LOT 18 Kearsarge Mountain Road Warner, New Hampshire

89 KING ROAD, CHICHESTER, NH PH: 603-387-8688

AERIAL & SITE PHOTOS

AERIAL PHOTO PROPOSED LAND SUBDIVISION TAX MAP 31 LOT 48 TAX MAP 33 LOT 18 Kearsarge Mountain Road Warner, New Hampshire Owner / Applicant: Sydney Elizabeth Boyer Kearsarge Mountain Road Warner, NH 03278

JUNE 28, 2023

PREPARED BY: **Rokeh Consulting, LLC** 89 KING ROAD, CHICHESTER, NH PH: 603-387-8688

0

hire

View

See more dates

Google

NRCS WEBB SOIL SURVEY

Hydrologic Soil Group-Merrimack and Belknap Counties, New Hampshire

Hydrologic Soil Group

	1	1	1	
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
55B	Hermon sandy loam, 0 to 8 percent slopes, very stony	A	3.2	10.6%
55C	Hermon sandy loam, 8 to 15 percent slopes, very stony	A	23.2	76.2%
380D	Tunbridge-Lyman- Becket complex, 15 to 25 percent slopes, very stony	C	0.3	1.1%
394A	Chocorua mucky peat, 0 to 1 percent slopes	A/D	3.5	11.4%
415B	Moosilauke fine sandy loam, 3 to 8 percent slopes, very stony	A/D	0.2	0.7%
Totals for Area of Intere	est		30.5	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

NORTHEAST REGIONAL CLIMATE CENTER

	ches.
•	П
•	IN
•	3
	aye
	2
:	aust
	are
,	S
	2
	2
	2
	аn
	2
•	2
1	1
	2
	ā
•	ฮ
	õ
	ā
2	-
	1
	2
•	serves.
	2
•	110

day	13 1yr	75 2yr	82 5yr	80 10yr	34 25yr	75 50yr	.39 100yr	.31 200yr	.37 500yr
ay 10	60 4.	15 4.	13 5.	03 6.	47 8.	78 9.	.33 11	.16 13	.10 16
ay 7d	0 3.0	4.	7 5.	9 6.	4 7.	9 8.	10.	05 12.	94 15.
y 4da	5 2.9	8 3.4	7 4.3) 5.1) 6.5	7.7	3 9.2	2 11.0	2 13.9
/ 2da	2.4(2.98	3.77	4.5(5.69	6.8(8.13	9.72	12.3
1day	2.06	2.44	3.03	3.56	4.41	5.19	6.12	7.21	. 8.97
	1yr	2yr	5yr	10yr	25yr	50yr	100yr	200yr	500yr
48hr	2.56	3.10	3.92	4.68	5.92	7.07	8.45	10.11	12.81
24hr	2.33	2.76	3.42	4.02	4.98	5.87	6.91	8.15	10.13
12hr	1.85	2.22	2.78	3.29	4.12	4.89	5.79	6.86	8.58
6hr	1.47	1.79	2.25	2.68	3.37	4.02	4.78	5.69	7.15
3hr	1.17	1.44	1.81	2.16	2.72	3.25	3.88	4.62	5.82
2hr	96.0	1.14	1.44	1.71	2.16	2.58	3.08	3.68	4.65
1hr	0.70	0.86	1.07	1.26	1.58	1.87	2.22	2.63	3.30
	1yr	2yr	5yr	10yr	25yr	50yr	100yr	200yr	500yr
120min	1.02	1.25	1.57	1.87	2.35	2.80	3.34	3.97	5.00
60min	0.81	0.99	1.24	1.46	1.83	2.17	2.57	3.05	3.82
30min	0.65	0.79	0.97	1.13	1.38	1.61	1.89	2.21	2.73
15min	0.49	0.60	0.72	0.83	1.00	1.15	1.33	1.55	1.88
10min	0.40	0.48	0.58	0.66	0.79	0.90	1.03	1.19	1.44
5min	0.26	0.31	0.37	0.42	0.49	0.56	0.64	0.73	0.88
	1yr	2yr	5yr	10yr	25yr	50yr	100yr	200yr	500yr

	5min	10min	15min	30min	60min	120min		$1\mathrm{hr}$	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.23	0.36	0.44	0.59	0.72	0.86	1yr	0.62	0.84	0.94	1.28	1.59	1.90	2.34	$1 \mathrm{yr}$	1.68	2.25	2.59	3.17	3.66	1yr
2yr	0.30	0.46	0.57	0.77	0.95	1.13	2yr	0.82	1.10	1.29	1.71	2.21	2.68	2.99	2yr	2.37	2.88	3.35	4.02	4.61	2yr
Syr	0.34	0.52	0.65	0.89	1.13	1.33	5yr	0.97	1.30	1.51	1.97	2.54	3.17	3.59	5yr	2.81	3.45	3.98	4.73	5.41	5yr
$10 \mathrm{yr}$	0.38	0.58	0.72	1.00	1.30	1.51	$10 \mathrm{yr}$	1.12	1.48	1.69	2.19	2.83	3.61	4.11	$10 \mathrm{yr}$	3.20	3.95	4.53	5.36	6.07	10yr
25yr	0.43	0.65	0.81	1.15	1.51	1.76	25yr	1.31	1.72	1.97	2.51	3.24	4.29	4.89	25yr	3.80	4.71	5.38	6.33	7.08	25yr
50yr	0.46	0.71	0.88	1.26	1.70	1.97	50yr	1.47	1.92	2.21	2.80	3.59	4.90	5.58	50yr	4.34	5.36	6.12	7.19	7.98	50yr
100yr	0.50	0.76	0.96	1.38	1.89	2.20	$100 \mathrm{yr}$	1.63	2.15	2.47	3.12	3.99	5.61	6.36	100yr	4.97	6.12	6.97	8.18	8.99	100yr
200yr	0.55	0.82	1.04	1.51	2.10	2.46	$200 \mathrm{yr}$	1.82	2.41	2.76	3.48	4.43	6.43	7.26	200yr	5.69	6.98	7.92	9.33	10.12	200yr
500yr	0.62	0.92	1.18	1.71	2.43	2.83	$500 \mathrm{yr}$	2.10	2.77	3.20	4.04	5.10	7.72	8.63	500yr	6.83	8.30	9.39	11.12	11.85	500yr

	Ĺ
10day	7V V
7day	2 N1
4day	312
2day	07 L
1day	フレレ
	1
48hr	0 <i>L</i> C
24hr	22 C
12hr	オロ ト
6hr	1 EN
3hr	1 JJ
2hr	1 00
1 hr	0 L U
	1

aur w

	•	1
	Iter	~
	Cen	100 000
	e C	I fun
	nat	10401
	lin	~I.o.
4		400 0
	na	
	. <u>5</u>	100 4
	Re	
	Ist	104020
	lea	
	Itl	10.00
	No	D.24.

Data represents point estimates calculated from partial dur

Metadata for Poir

Yes

imoothing	State	Location	Latitude	Congitude	Elevation	Date/Time
Sn		Г	Π	Ľ	Ξ	Ď

130 feet Sat Jun 24 2023 13:36:45 GMT-0400 (Eastern Daylight Time) 43.281 degrees North 71.817 degrees West

Extreme Precipitation Estimates

Lower Confidence Limits

Upper Confidence Limits

	5min	10min	15min	30min	60min	120min
1 wrue	ULU	U 1E	77 U	V L V	UU U	111

BMP WORK SHEETS

STORMWATER POND DESIGN CRITERIA Env-Wq 1508.03

Type/Node Name:	WET POND 1 2-20-24	
••	Enter the type of stormwater pond (e.g., Wet Pond) and the node name in the dra	inage analysis, if applicable
2.83 ac	A = Area draining to the practice	
$\frac{2.63}{0.44}$ ac	$A_{\rm T}$ = Impervious area draining to the practice	
0.15 decimal	I = percent impervious area draining to the practice, in decimal form	
0.19 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
0.53 ac-in	WOV=1" x Rv x A	
1.935 cf	WOV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
193 cf	10% x WQV (check calc for sediment forebay and micropool volume)	
967 cf	50% x WQV (check calc for extended detention volume)	
200 cf	V_{SED} = sediment forebay volume	$\leftarrow \geq 10\% WQV$
1 500 6	V_{PP} = permanent pool volume (volume below the lowest invert of the o	utlet structure) Attach
1,508 cf	stage-storage table.	
yes cf	Extended Detention? ¹	$\leftarrow \leq 50\% \mathrm{WQV}$
427	V_{ED} = Volume of Extended detention (if "yes is given in box above)	
500.15	E_{ED} = elevation of WQV if "yes" is given in box above ²	
0.01 cfs	$2Q_{avg} = 2* V_{ED} / 24$ hrs * (1hr / 3600 sec) (used to check against Q_{EDmax}	(below)
0.01 cfs	Q_{EDmax} = discharge at the E_{ED} (attach stage-discharge table)	$\leftarrow < 2Q_{avg}$
26.35 hours	$T_{\rm ED}$ = drawdown time of extended detention = $2V_{\rm ED}/Q_{\rm EDmax}$	$\leftarrow \geq 24$ -hrs
20.00 110010		
3.00 :1	Pond side slopes	← <u>></u> 3:1
$\frac{3.00}{502.00} \text{ ft}$	Pond side slopes Elevation of seasonal high water table	← <u>≥</u> 3:1
	Pond side slopes Elevation of seasonal high water table Elevation of lowest pond outlet	← <u>≥</u> 3:1
3.00 :1 502.00 ft 500.00 ft 497.00 ft	Pond side slopes Elevation of seasonal high water table Elevation of lowest pond outlet Max floor = maximum elevation of pond bottom (ft)	← ≥3:1
3.00 :1 502.00 ft 500.00 ft 497.00 ft	Pond side slopes Elevation of seasonal high water table Elevation of lowest pond outlet Max floor = maximum elevation of pond bottom (ft) Minimum floor (to maintain depth at less than 8')	 ← ≥3:1 ← ≤ 8 ft
$\begin{array}{r} 3.00 \\ \hline 3.00 \\ \hline 1 \\ \hline 502.00 \\ ft \\ \hline 500.00 \\ ft \\ \hline 497.00 \\ ft \\ \hline 492.00 \\ ft \\ \hline 497.00 \\ ft \\ \hline \end{array}$	Pond side slopes Elevation of seasonal high water table Elevation of lowest pond outlet Max floor = maximum elevation of pond bottom (ft) Minimum floor (to maintain depth at less than 8') Elevation of pond floor ³	 ← ≥3:1 ← ≤ 8 ft ← ≤ Max floor and >
3.00 :1 502.00 ft 500.00 ft 497.00 ft 497.00 ft 497.00 ft	Pond side slopes Elevation of seasonal high water table Elevation of lowest pond outlet Max floor = maximum elevation of pond bottom (ft) Minimum floor (to maintain depth at less than 8') Elevation of pond floor ³	← \geq 3:1 ← \leq 8 ft ← \leq Max floor and > Min floor
$ \begin{array}{r} 3.00 \\ 3.00 \\ 1 \\ 502.00 \\ ft \\ 500.00 \\ ft \\ 497.00 \\ ft \\ 497.00 \\ ft \\ 75.00 \\ ft \end{array} $	Pond side slopes Elevation of seasonal high water table Elevation of lowest pond outlet Max floor = maximum elevation of pond bottom (ft) Minimum floor (to maintain depth at less than 8') Elevation of pond floor ³ Length of the flow path between the inlet and outlet at mid-depth	← \geq 3:1 ← \leq 8 ft ← \leq Max floor and > Min floor
$\begin{array}{r} 3.00 \\ \hline 3.00 \\ \vdots 1 \\ \hline 502.00 \\ ft \\ \hline 500.00 \\ ft \\ \hline 497.00 \\ ft \\ \hline 497.00 \\ ft \\ \hline 497.00 \\ ft \\ \hline 75.00 \\ ft \\ \hline 25.00 \\ ft \\ \end{array}$	Pond side slopes Elevation of seasonal high water table Elevation of lowest pond outlet Max floor = maximum elevation of pond bottom (ft) Minimum floor (to maintain depth at less than 8') Elevation of pond floor ³ Length of the flow path between the inlet and outlet at mid-depth Average Width ([average of the top width + average bottom width]/2)	← \geq 3:1 ← \leq 8 ft ← \leq Max floor and > Min floor
$\begin{array}{r} 3.00 \\ \hline 3.00 \\ \hline 1 \\ \hline 502.00 \\ ft \\ \hline 500.00 \\ ft \\ \hline 497.00 \\ ft \\ \hline 497.00 \\ ft \\ \hline 497.00 \\ ft \\ \hline 75.00 \\ ft \\ \hline 25.00 \\ ft \\ \hline 3.00 \\ \hline 1 \\ \end{array}$	Pond side slopes Elevation of seasonal high water table Elevation of lowest pond outlet Max floor = maximum elevation of pond bottom (ft) Minimum floor (to maintain depth at less than 8') Elevation of pond floor ³ Length of the flow path between the inlet and outlet at mid-depth Average Width ([average of the top width + average bottom width]/2) Length to Average Width ratio	← ≥3:1 ← ≤ 8 ft ← ≤ Max floor and > Min floor ← ≥ 3:1
$\begin{array}{r} 3.00 :1 \\ \hline 3.00 :1 \\ \hline 502.00 \text{ ft} \\ \hline 500.00 \text{ ft} \\ \hline 497.00 \text{ ft} \\ \hline 492.00 \text{ ft} \\ \hline 497.00 \text{ ft} \\ \hline 25.00 \text{ ft} \\ \hline 3.00 :1 \\ \hline yes Yes/No \end{array}$	Pond side slopes Elevation of seasonal high water table Elevation of lowest pond outlet Max floor = maximum elevation of pond bottom (ft) Minimum floor (to maintain depth at less than 8') Elevation of pond floor ³ Length of the flow path between the inlet and outlet at mid-depth Average Width ([average of the top width + average bottom width]/2) Length to Average Width ratio The perimeter should be curvilinear.	← \geq 3:1 ← \leq 8 ft ← \leq Max floor and > Min floor ← \geq 3:1
3.00 :1 502.00 ft 500.00 ft 497.00 ft 497.00 ft 497.00 ft 25.00 ft 3.00 :1 yes Yes/No yes Yes/No	Pond side slopes Elevation of seasonal high water table Elevation of lowest pond outlet Max floor = maximum elevation of pond bottom (ft) Minimum floor (to maintain depth at less than 8') Elevation of pond floor ³ Length of the flow path between the inlet and outlet at mid-depth Average Width ([average of the top width + average bottom width]/2) Length to Average Width ratio The perimeter should be curvilinear. The inlet and outlet should be located as far apart as possible.	← ≥3:1 ← ≤ 8 ft ← ≤ Max floor and > Min floor ← ≥ 3:1
3.00 :1 502.00 ft 500.00 ft 497.00 ft 497.00 ft 497.00 ft 25.00 ft 3.00 :1 yes Yes/No yes Yes/No N Yes/No	Pond side slopes Elevation of seasonal high water table Elevation of lowest pond outlet Max floor = maximum elevation of pond bottom (ft) Minimum floor (to maintain depth at less than 8') Elevation of pond floor ³ Length of the flow path between the inlet and outlet at mid-depth Average Width ([average of the top width + average bottom width]/2) Length to Average Width ratio The perimeter should be curvilinear. The inlet and outlet should be located as far apart as possible. Is there a manually-controlled drain to dewater the pond over a 24hr period	← \geq 3:1 ← \leq 8 ft ← \leq Max floor and > Min floor ← \geq 3:1 tiod?
3.00 :1 502.00 ft 500.00 ft 497.00 ft 497.00 ft 497.00 ft 25.00 ft 3.00 :1 yes Yes/No yes Yes/No N Yes/No If no state why	Pond side slopes Elevation of seasonal high water table Elevation of lowest pond outlet Max floor = maximum elevation of pond bottom (ft) Minimum floor (to maintain depth at less than 8') Elevation of pond floor ³ Length of the flow path between the inlet and outlet at mid-depth Average Width ([average of the top width + average bottom width]/2) Length to Average Width ratio The perimeter should be curvilinear. The inlet and outlet should be located as far apart as possible. Is there a manually-controlled drain to dewater the pond over a 24hr perimeter What mechanism is proposed to prevent the outlet structure from close	← \geq 3:1 ← \leq 8 ft ← \leq Max floor and > Min floor ← \geq 3:1 riod?
3.00 :1 502.00 ft 500.00 ft 497.00 ft 497.00 ft 497.00 ft 25.00 ft 3.00 :1 yes Yes/No yes Yes/No N Yes/No If no state why	Pond side slopes Elevation of seasonal high water table Elevation of lowest pond outlet Max floor = maximum elevation of pond bottom (ft) Minimum floor (to maintain depth at less than 8') Elevation of pond floor ³ Length of the flow path between the inlet and outlet at mid-depth Average Width ([average of the top width + average bottom width]/2) Length to Average Width ratio The perimeter should be curvilinear. The inlet and outlet should be located as far apart as possible. Is there a manually-controlled drain to dewater the pond over a 24hr perimeter What mechanism is proposed to prevent the outlet structure from clogg orifices/weirs with a dimension of $< 6^{2}$) ²	← \geq 3:1 ← \leq 8 ft ← \leq Max floor and > Min floor ← \geq 3:1 riod? ing (applicable for
3.00 :1 502.00 ft 500.00 ft 497.00 ft 497.00 ft 497.00 ft 25.00 ft 25.00 ft 3.00 :1 yes Yes/No yes Yes/No If no state why NOT NECESSARY	Pond side slopes Elevation of seasonal high water table Elevation of lowest pond outlet Max floor = maximum elevation of pond bottom (ft) Minimum floor (to maintain depth at less than 8') Elevation of pond floor ³ Length of the flow path between the inlet and outlet at mid-depth Average Width ([average of the top width + average bottom width]/2) Length to Average Width ratio The perimeter should be curvilinear. The inlet and outlet should be located as far apart as possible. Is there a manually-controlled drain to dewater the pond over a 24hr per : What mechanism is proposed to prevent the outlet structure from clogg orifices/weirs with a dimension of <6")?	← \geq 3:1 ← \leq 8 ft ← \leq Max floor and > Min floor ← \geq 3:1 riod? ing (applicable for
3.00 :1 502.00 ft 500.00 ft 497.00 ft 497.00 ft 497.00 ft 25.00 ft 3.00 :1 yes Yes/No yes Yes/No If no state why NOT NECESSARY 501.56 ft 503.00 ft	Pond side slopes Elevation of seasonal high water table Elevation of lowest pond outlet Max floor = maximum elevation of pond bottom (ft) Minimum floor (to maintain depth at less than 8') Elevation of pond floor ³ Length of the flow path between the inlet and outlet at mid-depth Average Width ([average of the top width + average bottom width]/2) Length to Average Width ratio The perimeter should be curvilinear. The inlet and outlet should be located as far apart as possible. Is there a manually-controlled drain to dewater the pond over a 24hr per What mechanism is proposed to prevent the outlet structure from clogg orifices/weirs with a dimension of <6")? Peak elevation of the 50-year storm event Berm elevation of the pond	← \geq 3:1 ← \leq 8 ft ← \leq Max floor and > Min floor ← \geq 3:1 riod? ing (applicable for
3.00 :1 502.00 ft 500.00 ft 497.00 ft 497.00 ft 497.00 ft 25.00 ft 25.00 ft 25.00 ft 3.00 :1 yes Yes/No yes Yes/No If no state why NOT NECESSARY 501.56 ft 503.00 ft	Pond side slopes Elevation of seasonal high water table Elevation of lowest pond outlet Max floor = maximum elevation of pond bottom (ft) Minimum floor (to maintain depth at less than 8') Elevation of pond floor ³ Length of the flow path between the inlet and outlet at mid-depth Average Width ([average of the top width + average bottom width]/2) Length to Average Width ratio The perimeter should be curvilinear. The inlet and outlet should be located as far apart as possible. Is there a manually-controlled drain to dewater the pond over a 24hr per What mechanism is proposed to prevent the outlet structure from clogg orifices/weirs with a dimension of <6")? Peak elevation of the 50-year storm event Berm elevation of the pond 50 peak elevation < the berm elevation?	← ≥3:1 ← ≤ 8 ft ← ≤ Max floor and > Min floor ← ≥ 3:1 riod? ing (applicable for ← yes

entire WQV is stored in the perm. pool, there is no extended det., and the following five lines do not apply.

2. This is the elevation of WQV if the hydrologic analysis is set up to include the permanent pool storage in the node description.

3. If the pond floor elevation is above the max floor elev., a hydrologic budget must be submitted to demonstrate that a minimum depth of 3 feet can be maintained. (First check whether a revised "lowest pond outlet" elev. will resolve the issue.)

Designer's Notes:

WETLANDS ON ALL SIDES

Elevation

(feet)

499.12

0.00

501.28

0.03

Prepared by HP HydroCAD® 10.10-4a s/n 11004 © 2020 HydroCAD Software Solutions LLC

Primary Elevation Primary Elevation Primary (cfs) (feet) (cfs) (feet) (cfs) 0.00 499.16 0.00 501.32 0.03 499.20 0.00 501.36 0.03 499.24 0.00 501.40 0.03 499.28 0.00 501.44 0.03 499.32 0.00 501.48 0.03 499.36 0.00 501.52 0.03 499.40 501.56 0.00 0.03 499.44 0.00 501.60 0.03 499.48 501.64 0.00 0.03 499.52 501.68 0.00 0.03 499.56 501.72 0.00 0.03 499.60 0.00 501.76 0.03 499.64 0.00 501.80 0.03 499.68 0.00 501.84 0.04 499.72 501.88 0.04 0.00 499.76 501.92 0.00 0.04 499.80 0.00 501.96 0.04

497.00 497.04 0.00 497.08 0.00 497.12 0.00 497.16 0.00 497.20 0.00 497.24 0.00 0.00 497.28 497.32 0.00 0.00 497.36 497.40 0.00 497.44 0.00 497.48 0.00 497.52 0.00 497.56 0.00 497.60 0.00 497.64 0.00 499.84 502.00 0.04 497.68 0.00 0.00 497.72 499.88 502.04 0.25 0.00 0.00 497.76 0.00 499.92 0.00 502.08 0.63 499.96 502.12 497.80 0.00 0.00 1.13 497.84 500.00 502.16 1.71 0.00 0.00 497.88 0.00 500.04 0.00 502.20 2.38 497.92 0.00 500.08 0.01 502.24 3.11 497.96 0.00 500.12 0.01 502.28 3.92 498.00 0.00 500.16 0.01 502.32 4.78 498.04 0.00 500.20 0.01 502.36 5.69 498.08 0.00 500.24 0.01 502.40 6.66 498.12 0.00 500.28 0.01 502.44 7.68 498.16 0.00 500.32 0.01 502.48 8.74 0.00 0.01 502.52 498.20 500.36 9.85 498.24 0.00 500.40 0.02 502.56 10.95 0.00 500.44 0.02 498.28 502.60 11.01 498.32 0.00 500.48 0.02 502.64 11.08 498.36 0.00 500.52 0.02 502.68 11.14 498.40 0.00 500.56 0.02 502.72 11.20 498.44 0.00 500.60 0.02 502.76 11.27 498.48 0.00 500.64 0.02 502.80 11.33 500.68 498.52 0.00 0.02 502.84 11.39 0.00 498.56 500.72 0.02 502.88 11.45 498.60 0.00 500.76 0.02 502.92 11.51 0.00 502.96 498.64 500.80 0.02 11.57 0.00 500.84 0.02 503.00 498.68 11.63 0.02 498.72 0.00 500.88 498.76 0.00 500.92 0.02 498.80 0.00 500.96 0.03 498.84 0.00 501.00 0.03 0.00 501.04 498.88 0.03 498.92 0.00 501.08 0.03 0.00 501.12 498.96 0.03 501.16 0.03 499.00 0.00 0.00 501.20 0.03 499.04 499.08 0.00 501.24 0.03

Stage-Discharge for Pond 1P: MICRO POOL 1

KEARSARGE MTN RD WARNER POST 6-28-23

Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)
497.00	150	0	502.40	4.643	10.457
497.10	164	16	502.50	4,728	10,925
497.20	180	33	502.60	4.814	11,402
497.30	195	52	502.70	4,900	11.888
497.40	212	72	502.80	4.988	12.382
497.50	229	94	502.90	5.076	12,886
497.60	247	118	503.00	5.165	13,398
497.70	265	144		-,	-,
497.80	285	171			
497.90	304	200			
498.00	325	232			
498.10	347	266			
498.20	370	301			
498.30	394	340			
498.40	419	380			
498.50	444	423			
498.60	470	469			
498.70	497	517			
498.80	524	568			
498.90	552	622			
499.00	581	679			
499.10	611	738			
499.20	641	801			
499.30	672	867			
499.40	704	936			
499.50	737	1,008			
499.60	//0	1,083			
499.70	805	1,162			
499.80	839	1,244			
499.90	8/5	1,330			
500.00	2,895	1,508			
500.10	2,959	1,801			
500.20	3,024	2,100			
500.30	3,069	2,400			
500.40	3,100	2,710			
500.50	3,222	3,037			
500.60	3,290	3,303			
500.70	3,000	3,095			
500.00	3,427	4,034			
501.00	3,497	4,301			
501.00	3,507	5,094			
501.10	3 710	5 461			
501.20	3 783	5 836			
501.00	3 856	6 218			
501.40	3,930	6 607			
501.60	4,005	7,004			
501.70	4.080	7.408			
501.80	4,156	7.820			
501.90	4.233	8.239			
502.00	4.310	8.667			
502.10	4.392	9.102			
502.20	4,475	9,545			
502.30	4,558	9,997			

Stage-Area-Storage for Pond 1P: MICRO POOL 1

STORMWATER POND DESIGN CRITERIA Env-Wq 1508.03

Type/Node Name:	WET POND 2 2-20-24	
	Enter the type of stormwater pond (e.g., Wet Pond) and the node name in the dra	inage analysis, if applicable
3.16 ac	A = Area draining to the practice	
0.52 ac	A_{I} = Impervious area draining to the practice	
0.16 decimal	I = percent impervious area draining to the practice, in decimal form	
0.20 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
0.63 ac-in	WQV=1" x Rv x A	
2,272 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
227 cf	10% x WQV (check calc for sediment forebay and micropool volume)	
1,136 cf	50% x WQV (check calc for extended detention volume)	
OREBAY cf	V_{SED} = sediment forebay volume	$\leftarrow \geq 10\% WQV$
250 of	V_{PP} = permanent pool volume (volume below the lowest invert of the o	utlet structure) Attach
250 cf	stage-storage table.	
yes cf	Extended Detention? ¹	$\leftarrow \leq 50\% \mathrm{WQV}$
2,022	V_{ED} = Volume of Extended detention (if "yes is given in box above)	
487.80	E_{ED} = elevation of WQV if "yes" is given in box above ²	
0.05 cfs	$2Q_{avg} = 2* V_{ED} / 24$ hrs * (1hr / 3600 sec) (used to check against Q_{EDmax}	(below)
0.02 cfs	Q_{EDmax} = discharge at the E_{ED} (attach stage-discharge table)	$\leftarrow < 2Q_{avg}$
56.18 hours	T_{ED} = drawdown time of extended detention = $2V_{ED}/Q_{EDmax}$	$\leftarrow \geq 24$ -hrs
3.00 :1	Pond side slopes	← <u>></u> 3:1
490.00 ft	Elevation of seasonal high water table	
487.00 ft	Elevation of lowest pond outlet	
484.00 ft	Max floor = maximum elevation of pond bottom (ft)	
479.00 ft	Minimum floor (to maintain depth at less than 8')	← <u>≤</u> 8 ft
484.00 ft	Elevation of nond floor ³	$\leftarrow \leq$ Max floor and >
404.00 It	Elevation of police noor	Min floor
54.00 ft	Length of the flow path between the inlet and outlet at mid-depth	
15.00 ft	Average Width ([average of the top width + average bottom width]/2)	
3.60 :1	Length to Average Width ratio	← ≥ 3:1
yes Yes/No	The perimeter should be curvilinear.	
yes Yes/No	The inlet and outlet should be located as far apart as possible.	
N Yes/No	Is there a manually-controlled drain to dewater the pond over a 24hr per	riod?
If no state why	What machanism is proposed to prevent the outlet structure from along	ing (applicable for
NOT NECESSADY	what mechanism is proposed to prevent the outlet structure from clogg orifices/wairs with a dimension of -6°	ing (applicable for
A00 25 C	Deals allowation of the 50 years atoms sweet.	
488.25 II 480.25 ft	Perm alevation of the pond	
409.23 II	50 peak elevation < the berm elevation?	← ves
	so peux electution <u>s</u> the berni electution.	x yes

1. If the entire WQV is stored in the perm. pool, there is no extended det., and the following five lines do not apply.

2. This is the elevation of WQV if the hydrologic analysis is set up to include the permanent pool storage in the node description.

3. If the pond floor elevation is above the max floor elev., a hydrologic budget must be submitted to demonstrate that a minimum depth of 3 feet can be maintained. (First check whether a revised "lowest pond outlet" elev. will resolve the issue.)

Designer's Notes:

WETLANDS ON ALL SIDES

_

Prepared by HP HydroCAD® 10.10-4a s/n 11004 © 2020 HydroCAD Software Solutions LLC

Stage-Discharge for Pond 4P: MICRO POOL POND 2

Elevation	Primary	Elevation	Primary
484.00		486.70	
404.00	0.00	400.70	0.00
484 10	0.00	400.75	0.00
404.10	0.00	400.00	0.00
404.13	0.00	400.00	0.00
404.20	0.00	400.90	0.00
484 30	0.00	487.00	0.00
484.35	0.00	487.00	0.00
484 40	0.00	487 10	0.00
484 45	0.00	487.10	0.01
484 50	0.00	487.20	0.01
484.55	0.00	487.25	0.01
484.60	0.00	487.30	0.01
484.65	0.00	487.35	0.01
484.70	0.00	487.40	0.02
484.75	0.00	487.45	0.02
484.80	0.00	487.50	0.02
484.85	0.00	487.55	0.02
484.90	0.00	487.60	0.02
484.95	0.00	487.65	0.02
485.00	0.00	487.70	0.02
485.05	0.00	487.75	0.02
485.10	0.00	487.80	0.02
485.15	0.00	487.85	0.02
485.20	0.00	487.90	0.02
485.25	0.00	487.95	0.03
485.30	0.00	488.00	0.03
485.35	0.00	488.05	0.03
485.40	0.00	488.10	0.03
485.45	0.00	488.15	0.03
485.50	0.00	488.20	0.03
485.55	0.00	488.25	0.03
485.60	0.00	488.30	0.32
485.65	0.00	488.35	0.86
400.70	0.00	400.40	1.00
405.75	0.00	400.45	2.37
405.00	0.00	400.00	0.00 ∕\ 33
485.90	0.00	488.60	5 45
485.95	0.00	488.65	6.65
486.00	0.00	488.70	7.93
486.05	0.00	488.75	9.28
486.10	0.00	488.80	10.71
486.15	0.00	488.85	10.94
486.20	0.00	488.90	11.01
486.25	0.00	488.95	11.09
486.30	0.00	489.00	11.17
486.35	0.00		
486.40	0.00		
486.45	0.00		
486.50	0.00		
486.55	0.00		
486.60	0.00		
486.65	0.00		

Prepared by HP HydroCAD® 10.10-4a s/n 11004 © 2020 HydroCAD Software Solutions LLC

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
484.00	80	0	486.70	686	941
484.05	90	4	486.75	702	976
484.10	99	9	486.80	718	1,011
484.15	108	14	486.85	734	1,047
484.20	118	20	486.90	750	1,084
484.25	128	26	486.95	900	1,126
484.30	137	33	487.00	1,051	1,175
484.35	147	40	487.05	1,080	1,228
484.40	156	47	487.10	1,109	1,283
484.45	165	55	487.15	1,138	1,339
484.50	175	64	487.20	1,167	1,396
484.55	185	73	487.25	1,197	1,455
484.60	194	82	487.30	1,226	1,516
484.65	203	92	487.35	1,255	1,578
484.70	213	103	487.40	1,284	1,642
484.75	223	113	487.45	1,313	1,706
484.80	232	125	487.50	1,342	1,773
484.85	242	137	487.55	1,371	1,841
484.90	251	149	487.60	1,400	1,910
484.95	260	162	487.65	1,429	1,981
485.00	270	175	487.70	1,458	2,053
485.05	280	189	487.75	1,488	2,126
485.10	289	203	487.80	1,517	2,202
485.15	298	218	487.85	1,546	2,278
485.20	308	233	487.90	1,575	2,356
485.25	318	248	487.95	1,604	2,436
485.30	327	265	488.00	1,633	2,517
485.35	337	281	488.05	1,666	2,599
485.40	346	298	488.10	1,699	2,683
485.45	355	316	488.15	1,/31	2,769
485.50	365	334	488.20	1,764	2,856
485.55	375	352	488.25	1,797	2,945
485.60	384	371	488.30	1,830	3,036
485.65	393	391	488.35	1,862	3,128
485.70	403	411	488.40	1,895	3,222
460.70	413	431	400.40	1,920	3,310
400.00	422	402	400.00	1,901	3,415
400.00	432	473	400.00	1,995	3,014
400.90	441	490	400.00	2,020	3,014
400.90	400	540	400.00	2,009	3,710
486.00	400	563	400.70	2,031	3,020
486.10	470	588	400.75	2,124	3,920 4 033
486 15	508	613	400.00	2,107	4,000
486.20	524	638	488.90	2,100	4 252
486.25	541	665	488.95	2 255	4,262
486.30	557	693	489.00	2 288	4 477
486.35	573	721	100.00	2,200	
486.40	589	750			
486.45	605	780			
486.50	621	810			
486.55	637	842			
486.60	653	874			

907

669

486.65

Stage-Area-Storage for Pond 4P: MICRO POOL POND 2

OUTLET PROTECTION

RIPRAP CALCULATIONS DATE: 2/20/24 REVISED: PROJECT NAME: KEARSARGE ROAD LOCATION: WARNER

VARIABLES:

Q = DISCHARGE FROM OUTLET Do = PIPE DIAMETER Tw = TAIL WATER La = LENGTH OF RIPRAP Wi = WIDTH OF RIPRAP AT OUTLET We = WIDTH OF RIPRAP DOWNSTREAM FROM OUTLET d50 = RIPRAP SIZE

EQUATIONS:

FOR Tw < 1/2 Do

 $\label{eq:constraint} \begin{array}{l} La = (1.8 Q/Do^{1.5}) + 7 Do \\ Wi = 3 Do \\ We = Do + La \\ d50 = (0.02 Q^{1.33})/(Tw)(Do) \end{array}$

FOR Tw > or = 1/2 Do

La = $(3Q)/(Do^{1.5})$ Wi = 3Do We = Do + 0.4La d50 = $(0.02Q^{1.33})/(Tw)(Do)$

OUTLET	Q	Do	Tw	La	Wi	We	d50
		FEEI	FEEI	FEEI	FEEI	FEEI	INCHES
FES 1	0.72	1.25	0.10	9.68	3.75	10.93	1.24
FES 2	0.02	1.25	0.10	8.78	3.75	10.03	0.01
l	I	I		I	I	I	I

JOB NO.

YEARS

DESIGN STORM: 25

PREDEVELOPMENT DRAINAGE CALCULATIONS

KEARSARGE MTN RD WARNER PRE 7-23-24

Prepared by HP HydroCAD® 10.10-4a s/n 11004 © 2020 HydroCAD Software Solutions LLC

Area Listing (all nodes)

12	.924	32	TOTAL AREA
9	.647	30	Woods, Good, HSG A (1S, 2S)
0	.046	98	Existing roadway, HSG A (1S)
3	.231	39	>75% Grass cover, Good, HSG A (1S, 2S)
(ac	cres)		(subcatchment-numbers)
1	Area	CN	Description

KEARSARGE MTN RD WARNER PRE 7-23-24

Prepared by HP HydroCAD® 10.10-4a s/n 11004 © 2020 HydroCAD Software Solutions LLC

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
12.924	HSG A	1S, 2S
0.000	HSG B	
0.000	HSG C	
0.000	HSG D	
0.000	Other	
12.924		TOTAL AREA

KEARSARGE MTN RD WARNER PRE 7-23-247Prepared by HPHydroCAD® 10.10-4a s/n 11004 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 2yr Rainfall=2.76" Printed 7/24/2024 Page 4

Time span=1.00-36.00 hrs, dt=0.05 hrs, 701 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1S: AREA FLOWING WEST TO Runoff Area=164,744 sf 1.22% Impervious Runoff Depth=0.00" Flow Length=818' Tc=19.9 min CN=33 Runoff=0.00 cfs 0.000 af

Subcatchment 2S: AREA FLOWING SOUTH TO Runoff Area=398,245 sf 0.00% Impervious Runoff Depth=0.00" Flow Length=1,365' Tc=35.2 min CN=32 Runoff=0.00 cfs 0.000 af

Link POA1: POA1 AT KEARSARGE MTN RD

Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af

Link POA2: AT WETLAND

Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af

Total Runoff Area = 12.924 ac Runoff Volume = 0.000 af Average Runoff Depth = 0.00" 99.64% Pervious = 12.878 ac 0.36% Impervious = 0.046 ac

0.00"

Summary for Subcatchment 1S: AREA FLOWING WEST TO EX. ROADWAY

Runoff = 0.00 cfs @ 1.00 hrs, Volume= 0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2yr Rainfall=2.76"

	A	rea (sf)	CN	Description		
*		2,004	98	Existing roa	dway, HSC	A A
		35,850	39	>75% Gras	s cover, Go	od, HSG A
	1	26,890	30	Woods, Go	od, HSG A	
	1	64,744	33	Weighted A	verage	
	1	62,740		98.78% Per	vious Area	
		2,004		1.22% Impe	ervious Area	a
			_			
	Тс	Length	Slop	e Velocity	Capacity	Description
((min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	10.9	100	0.130	0.15		Sheet Flow, WOODS
						Woods: Light underbrush n= 0.400 P2= 2.76"
	9.0	718	0.070	0 1.32		Shallow Concentrated Flow, WOODS
						Woodland Kv= 5.0 fps
	19.9	818	Total			

Summary for Subcatchment 2S: AREA FLOWING SOUTH TO WETLAND

Runoff	=	0.00 cfs @	1.00 hrs.	Volume=	0.000 af.	Depth=
	_	0.00 013 @	1.001113,	Volume_	0.000 ai,	Dopui-

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2yr Rainfall=2.76"

	Ar	ea (sf)	CN	Description		
		19,384	39	>75% Gras	s cover, Go	od, HSG A
	1:	31,943	30	Woods, Go	od, HSG A	
	1	85,506	39	>75% Gras	s cover, Go	od, HSG A
_	10	61,412	30	Woods, Go	od, HSG A	
	39	98,245	32	Weighted A	verage	
	39	98,245		100.00% Pe	ervious Area	a
	_					
	Tc	Length	Slop	e Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft	t) (ft/sec)	(cfs)	
	13.3	100	0.080	0 0.13		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 2.76"
	9.5	900	0.100	0 1.58		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	12.4	365	0.001	0 0.49	10.99	Trap/Vee/Rect Channel Flow,
						Bot.W=30.00' D=0.50' Z= 30.0 '/' Top.W=60.00'
_						n= 0.050
	35.2	1,365	Total			

Summary for Link POA1: POA1 AT KEARSARGE MTN RD

Inflow Are	a =	3.782 ac,	1.22% Impervious, Inflow	/ Depth = 0.00"	for 2yr event
Inflow	=	0.00 cfs @	1.00 hrs, Volume=	0.000 af	
Primary	=	0.00 cfs @	1.00 hrs, Volume=	0.000 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Summary for Link POA2: AT WETLAND

Inflow Are	ea =	9.142 ac,	0.00% Impervious,	Inflow Depth = 0).00" for 2yr event
Inflow	=	0.00 cfs @	1.00 hrs, Volume	= 0.000 af	
Primary	=	0.00 cfs @	1.00 hrs, Volume	= 0.000 af	, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

KEARSARGE MTN RD WARNER PRE 7-23-24 Type III 24-hr 10YR Rainfall=4.02" Printed 7/24/2024 Prepared by HP HydroCAD® 10.10-4a s/n 11004 © 2020 HydroCAD Software Solutions LLC

Time span=1.00-36.00 hrs, dt=0.05 hrs, 701 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1S: AREA FLOWING WEST TO Runoff Area=164,744 sf 1.22% Impervious Runoff Depth=0.00" Flow Length=818' Tc=19.9 min CN=33 Runoff=0.00 cfs 0.000 af

Subcatchment 2S: AREA FLOWING SOUTH TO Runoff Area=398,245 sf 0.00% Impervious Runoff Depth=0.00" Flow Length=1,365' Tc=35.2 min CN=32 Runoff=0.00 cfs 0.000 af

Link POA1: POA1 AT KEARSARGE MTN RD

Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af

Page 7

Link POA2: AT WETLAND

Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af

Total Runoff Area = 12.924 ac Runoff Volume = 0.000 af Average Runoff Depth = 0.00" 0.36% Impervious = 0.046 ac 99.64% Pervious = 12.878 ac

HydroCAD® 10.10-4a s/n 11004 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 1S: AREA FLOWING WEST TO EX. ROADWAY

Runoff = 0.00 cfs @ 1.00 hrs, Volume= 0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10YR Rainfall=4.02"

	A	rea (sf)	CN	Description		
*		2,004	98	Existing roa	dway, HSG	βA
		35,850	39	>75% Gras	s cover, Go	ood, HSG A
	1	26,890	30	Woods, Go	od, HSG A	
	1	64,744	33	Weighted A	verage	
162,740				98.78% Pervious Area		
		2,004		1.22% Impe	ervious Area	a
	Тс	Length	Slop	e Velocity	Capacity	Description
	<u>(min)</u>	(feet)	(ft/f) (ft/sec)	(cfs)	
	10.9	100	0.130	0 0.15		Sheet Flow, WOODS
						Woods: Light underbrush n= 0.400 P2= 2.76"
	9.0	718	0.070	0 1.32		Shallow Concentrated Flow, WOODS
						Woodland Kv= 5.0 fps
	19.9	818	Total			

Summary for Subcatchment 2S: AREA FLOWING SOUTH TO WETLAND

Runoff = 0.00 cfs @ 1.00 hrs, Volume= 0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10YR Rainfall=4.02"

Ar	rea (sf)	CN	Description						
19,384 39			>75% Grass cover, Good, HSG A						
131,943 30		30	Woods, Good, HSG A						
85,506		39	>75% Grass cover, Good, HSG A						
161,412 30			Woods, Good, HSG A						
3	98,245	32	Weighted Average						
3	98,245		100.00% Pervious Area						
_		-							
Tc	Tc Length		e Velocity	Capacity	Description				
<u>(min)</u>	(feet)	(ft/ft) (ft/sec)	(cfs)					
13.3	100	0.0800	0.13		Sheet Flow,				
					Woods: Light underbrush n= 0.400 P2= 2.76"				
9.5	900	0.1000) 1.58		Shallow Concentrated Flow,				
					Woodland Kv= 5.0 fps				
12.4	365	0.0010	0.49	10.99	Trap/Vee/Rect Channel Flow,				
					Bot.W=30.00' D=0.50' Z= 30.0 '/' Top.W=60.00'				
					n= 0.050				
35.2	1,365	Total							

HydroCAD® 10.10-4a s/n 11004 © 2020 HydroCAD Software Solutions LLC

Summary for Link POA1: POA1 AT KEARSARGE MTN RD

Inflow Are	a =	3.782 ac,	1.22% Impervious, Inflow	/ Depth = 0.00"	for 10YR event
Inflow	=	0.00 cfs @	1.00 hrs, Volume=	0.000 af	
Primary	=	0.00 cfs @	1.00 hrs, Volume=	0.000 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Summary for Link POA2: AT WETLAND

Inflow A	Area	=	9.142 ac,	0.00% Imperviou	us, Inflow	Depth =	0.00" f	or 10	YR event
Inflow	=	=	0.00 cfs @	1.00 hrs, Volu	me=	0.000 a	f		
Primary	/ =	=	0.00 cfs @	1.00 hrs, Volu	me=	0.000 a	f, Atten=	= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs
KEARSARGE MTN RD WARNER PRE 7-23-24
 Type III 24-hr 25YR Rainfall=4.98"

 Prepared by HP
 Printed 7/24/2024
 Printed 7/24/2024

 HydroCAD® 10.10-4a s/n 11004 © 2020 HydroCAD Software Solutions LLC
 Page 10

 Time span=1.00-36.00 hrs, dt=0.05 hrs, 701 points

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1S: AREA FLOWING WEST TO Runoff Area=164,744 sf 1.22% Impervious Runoff Depth=0.04" Flow Length=818' Tc=19.9 min CN=33 Runoff=0.02 cfs 0.013 af

Subcatchment 2S: AREA FLOWING SOUTH TO Runoff Area=398,245 sf 0.00% Impervious Runoff Depth=0.02" Flow Length=1,365' Tc=35.2 min CN=32 Runoff=0.03 cfs 0.018 af

Link POA1: POA1 AT KEARSARGE MTN RD

Inflow=0.02 cfs 0.013 af Primary=0.02 cfs 0.013 af

Link POA2: AT WETLAND

Inflow=0.03 cfs 0.018 af Primary=0.03 cfs 0.018 af

Total Runoff Area = 12.924 ac Runoff Volume = 0.031 af Average Runoff Depth = 0.03" 99.64% Pervious = 12.878 ac 0.36% Impervious = 0.046 ac

HydroCAD® 10.10-4a s/n 11004 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 1S: AREA FLOWING WEST TO EX. ROADWAY

Runoff 0.02 cfs @ 17.18 hrs, Volume= 0.013 af, Depth= 0.04" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25YR Rainfall=4.98"

	A	rea (sf)	CN	Description		
*		2,004	98	Existing roa	dway, HSC	A A
		35,850	39	>75% Gras	s cover, Go	od, HSG A
	1	26,890	30	Woods, Go	od, HSG A	
	1	64,744	33	Weighted A	verage	
	1	62,740		98.78% Per	vious Area	
2,004 1.22% Impervious Area						a
			_			
	Тс	Length	Slop	e Velocity	Capacity	Description
((min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	10.9	100	0.130	0.15		Sheet Flow, WOODS
						Woods: Light underbrush n= 0.400 P2= 2.76"
	9.0	718	0.070	0 1.32		Shallow Concentrated Flow, WOODS
						Woodland Kv= 5.0 fps
	19.9	818	Total			

Summary for Subcatchment 2S: AREA FLOWING SOUTH TO WETLAND

Runoff = 0.03 cfs @ 21.69 hrs, Volume= 0.018 af, Depth= 0.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25YR Rainfall=4.98"

Ar	rea (sf)	CN	Description				
	19,384 39 >75% Grass cover, Good, HSG A						
1:	31,943	30	Woods, Go	od, HSG A			
	85,506	39	>75% Gras	s cover, Go	od, HSG A		
1	61,412	30	Woods, Go	Noods, Good, HSG A			
3	98,245	32	Weighted A	verage			
3	98,245		100.00% Pe	ervious Area	a		
				-			
Tc	Length	Slop	e Velocity	Capacity	Description		
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)			
13.3	100	0.080	0.13		Sheet Flow,		
					Woods: Light underbrush n= 0.400 P2= 2.76"		
9.5	900	0.100	0 1.58		Shallow Concentrated Flow,		
					Woodland Kv= 5.0 fps		
12.4	365	0.001	0.49	10.99	Trap/Vee/Rect Channel Flow,		
					Bot.W=30.00' D=0.50' Z= 30.0 '/' Top.W=60.00'		
					n= 0.050		
35.2	1,365	Total					

Page 11

HydroCAD® 10.10-4a s/n 11004 © 2020 HydroCAD Software Solutions LLC

Summary for Link POA1: POA1 AT KEARSARGE MTN RD

Inflow Area	a =	3.782 ac,	1.22% Impe	ervious,	Inflow	Depth =	0.0	4" for 25	YR event	
Inflow	=	0.02 cfs @	17.18 hrs,	Volume=	=	0.013	af			
Primary	=	0.02 cfs @	17.18 hrs,	Volume=	=	0.013 a	af, i	Atten= 0%,	Lag= 0.0	min

Primary outflow = Inflow, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Summary for Link POA2: AT WETLAND

Inflow A	Area	=	9.142 ac,	0.00% Imp	ervious,	Inflow	Depth =	0.02	2" for 25`	YR event
Inflow	=	=	0.03 cfs @	21.69 hrs,	Volume	=	0.018	af		
Primary	/ =	=	0.03 cfs @	21.69 hrs,	Volume	=	0.018	af, A	Atten= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

 KEARSARGE MTN RD WARNER PRE 7-23-24
 Type III 24-hr 50YR Rainfall=5.87"

 Prepared by HP
 Printed 7/24/2024
 Printed 7/24/2024

 HydroCAD® 10.10-4a s/n 11004 © 2020 HydroCAD Software Solutions LLC
 Page 13

 Time span=1.00-36.00 hrs, dt=0.05 hrs, 701 points

Time span=1.00-36.00 hrs, dt=0.05 hrs, 701 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1S: AREA FLOWING WEST TO Runoff Area=164,744 sf 1.22% Impervious Runoff Depth=0.15" Flow Length=818' Tc=19.9 min CN=33 Runoff=0.07 cfs 0.047 af

Subcatchment 2S: AREA FLOWING SOUTH TO Runoff Area=398,245 sf 0.00% Impervious Runoff Depth=0.11" Flow Length=1,365' Tc=35.2 min CN=32 Runoff=0.14 cfs 0.087 af

Link POA1: POA1 AT KEARSARGE MTN RD

Inflow=0.07 cfs 0.047 af Primary=0.07 cfs 0.047 af

Link POA2: AT WETLAND

Inflow=0.14 cfs 0.087 af Primary=0.14 cfs 0.087 af

Total Runoff Area = 12.924 ac Runoff Volume = 0.134 af Average Runoff Depth = 0.12" 99.64% Pervious = 12.878 ac 0.36% Impervious = 0.046 ac

HydroCAD® 10.10-4a s/n 11004 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 1S: AREA FLOWING WEST TO EX. ROADWAY

Runoff 0.07 cfs @ 14.90 hrs, Volume= 0.047 af, Depth= 0.15" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 50YR Rainfall=5.87"

	A	rea (sf)	CN	Description		
*		2,004	98	Existing roa	adway, HSC	βA
		35,850	39	>75% Gras	s cover, Go	ood, HSG A
	1	26,890	30	Woods, Go	od, HSG A	
	1	64,744	33	Weighted A	verage	
162,740 98.78% Pervious Area						
2,004 1.22% Impervious Area						a
	Tc	Length	Slop	e Velocity	Capacity	Description
	<u>(min)</u>	(feet)	(ft/f) (ft/sec)	(cfs)	
	10.9	100	0.130	0 0.15		Sheet Flow, WOODS
						Woods: Light underbrush n= 0.400 P2= 2.76"
	9.0	718	0.070	0 1.32		Shallow Concentrated Flow, WOODS
						Woodland Kv= 5.0 fps
	100	010	Tatal			

818 Total 19.9

Summary for Subcatchment 2S: AREA FLOWING SOUTH TO WETLAND

Runoff = 0.14 cfs @ 15.44 hrs, Volume= 0.087 af, Depth= 0.11"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 50YR Rainfall=5.87"

_	Ar	ea (sf)	CN	Description			
	19,384 39 >75% Grass cover, Good, HSG A						
	1:	31,943	30	Woods, Go	od, HSG A		
		85,506	39	>75% Gras	s cover, Go	ood, HSG A	
_	1	61,412	30	Woods, Go	od, HSG A		
	3	98,245	32	Weighted A	verage		
	3	98,245		100.00% Pe	ervious Area	a	
	_						
	Tc	Length	Slope	e Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)		
	13.3	100	0.080	0.13		Sheet Flow,	
						Woods: Light underbrush n= 0.400 P2= 2.76"	
	9.5	900	0.100	0 1.58		Shallow Concentrated Flow,	
						Woodland Kv= 5.0 fps	
	12.4	365	0.001	0.49	10.99	Trap/Vee/Rect Channel Flow,	
						Bot.W=30.00' D=0.50' Z= 30.0 '/' Top.W=60.00'	
_						n= 0.050	
	35.2	1,365	Total				

Page 14

Summary for Link POA1: POA1 AT KEARSARGE MTN RD

Inflow Are	a =	3.782 ac,	1.22% Impervious,	Inflow Depth = 0 .	.15" for 50YR event
Inflow	=	0.07 cfs @	14.90 hrs, Volume	= 0.047 af	
Primary	=	0.07 cfs @	14.90 hrs, Volume	= 0.047 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Summary for Link POA2: AT WETLAND

Inflow A	rea =	=	9.142 ac,	0.00% Imp	ervious,	Inflow	Depth =	0.1	11" fo	r 50`	YR eve	ent
Inflow	=		0.14 cfs @	15.44 hrs,	Volume	=	0.087	af				
Primary	' =		0.14 cfs @	15.44 hrs,	Volume	=	0.087	af,	Atten=	0%,	Lag= (0.0 min

Primary outflow = Inflow, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

STORMWATER MANAGEMENT REPORT Residential Subdivision Kearsarge MT. Road Warner NH

POST DEVELOPMENT DRAINAGE CALCULATIONS

Prepared by HP HydroCAD® 10.10-4a s/n 11004 © 2020 HydroCAD Software Solutions LLC

Area Listing (selected nodes)

Are	a CN	Description
(acres	3)	(subcatchment-numbers)
4.92	6 39	>75% Grass cover, Good, HSG A (1S, 2S, 3S, 4S, 5S, 7S)
0.04	6 98	Existing roadway, HSG A (1S)
0.42	0 98	Paved parking, HSG A (2S, 3S, 5S, 7S)
0.16	2 98	Paved roadway, HSG A (3S, 4S)
0.04	6 98	Roofs, HSG A (3S)
0.04	6 98	Unconnected roofs, HSG A (2S)
7.27	8 30	Woods, Good, HSG A (1S, 2S, 3S, 4S)
12.92	4 37	TOTAL AREA

Prepared by HP HydroCAD® 10.10-4a s/n 11004 © 2020 HydroCAD Software Solutions LLC

Soil Listing (selected nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
12.924	HSG A	1S, 2S, 3S, 4S, 5S, 7S
0.000	HSG B	
0.000	HSG C	
0.000	HSG D	
0.000	Other	
12.924		TOTAL AREA

KEARSARGE MTN RD WARNER POST 7-23-24 - Copy Prepared by HP Type III 24-hr 2yr Rainfall=2.76" Printed 7/24/2024 Page 4

HydroCAD® 10.10-4a s/n 11004 © 2020 HydroCAD Software Solutions LLC

Time span=1.00-36.00 hrs, dt=0.05 hrs, 701 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Pond 1P: MICRO POOL 1	Peak Elev=498.96' Storage=654 cf Inflow=0.16 cfs 0.015 af Outflow=0.00 cfs 0.000 af
Subcatchment 1S: REMAINDER FLOW TO	Runoff Area=102,813 sf 1.95% Impervious Runoff Depth=0.00" Flow Length=791' Tc=19.1 min CN=34 Runoff=0.00 cfs 0.000 af
Pond 2P: CATCH BASIN Discarded=0.0	Peak Elev=484.00' Storage=0.000 af Inflow=0.00 cfs 0.000 af 0 cfs 0.000 af Primary=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Subcatchment 2S: FLOW TO WETLAND Flow Length	Runoff Area=315,168 sf 0.98% Impervious Runoff Depth=0.00" n=1,365' Tc=35.2 min UI Adjusted CN=33 Runoff=0.00 cfs 0.000 af
Subcatchment 3S: FLOW TO POND	Runoff Area=108,551 sf 10.79% Impervious Runoff Depth=0.00" Flow Length=627' Tc=17.0 min CN=42 Runoff=0.00 cfs 0.000 af
Pond 4P: MICRO POOL POND 2	Peak Elev=485.89' Storage=493 cf Inflow=0.10 cfs 0.011 af Outflow=0.00 cfs 0.000 af
Subcatchment 4S: FLOW TO CB 2P	Runoff Area=7,292 sf 13.33% Impervious Runoff Depth=0.01" Tc=6.0 min CN=45 Runoff=0.00 cfs 0.000 af
Reach 5R: ROADSIDE DITCH n=0.050 L	Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af =180.0' S=0.0467 '/' Capacity=11.71 cfs Outflow=0.00 cfs 0.000 af
Subcatchment 5S: TO LOWER POND	Runoff Area=14,751 sf 43.31% Impervious Runoff Depth=0.40" Tc=6.0 min CN=65 Runoff=0.10 cfs 0.011 af
Pond 6P: EXISTING EXTENDED CULVERT 15.0" Ro	Peak Elev=487.73' Storage=0 cf Inflow=0.00 cfs 0.000 af und Culvert n=0.013 L=62.0' S=0.0553 '/' Outflow=0.00 cfs 0.000 af
Subcatchment 7S: TO INLET PIPE	Runoff Area=14,399 sf 50.23% Impervious Runoff Depth=0.55" Tc=6.0 min CN=69 Runoff=0.17 cfs 0.015 af
Pond 8P: CULVERT 15.0" Ro	Peak Elev=499.62' Storage=10 cf Inflow=0.17 cfs 0.015 af und Culvert n=0.013 L=80.0' S=0.0050 '/' Outflow=0.16 cfs 0.015 af
Link POA1: POA1 AT KEARSARGE MTN RE	Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af
Link POA2: AT WETLAND	Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af
Total Runoff Area = 12.924	4 ac Runoff Volume = 0.026 af Average Runoff Depth = 0.02" 94.42% Pervious = 12.203 ac 5.58% Impervious = 0.721 ac

Summary for Pond 1P: MICRO POOL 1

Inflow Area	a =	2.823 ac, 15	5.41% Impervious,	Inflow Depth =	0.06" for	2yr event
Inflow	=	0.16 cfs @	12.13 hrs, Volume	= 0.015 a	lf	
Outflow	=	0.00 cfs @	1.00 hrs, Volume	= 0.000 a	If, Atten= ⁻	100%, Lag= 0.0 min
Primary	=	0.00 cfs @	1.00 hrs, Volume	= 0.000 a	ſ	

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 498.96' @ 36.00 hrs Surf.Area= 569 sf Storage= 654 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no outflow)

Volume	Inve	ert Ava	il.Storage	Storage Descript	ion					
#1	497.0)0'	13,398 cf	Custom Stage Data (Irregular) Listed below (Recalc)						
Elevatio	n	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area				
(fee	et)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)				
497.0	00	150	48.0	0	0	150				
498.0	00	325	66.0	232	232	323				
499.9	90	875	102.0	1,098	1,330	830				
500.0	00	2,895	237.0	179	1,508	4,472				
502.0	00	4,310	276.0	7,158	8,667	6,145				
503.0	00	5,165	294.0	4,731	13,398	7,009				
Device	Routing	Ir	nvert Outle	et Devices						
#1	Primary	49	8.50' 15.0 '	' Round Culvert	L= 37.0' CPP, s	square edge headwall	, Ke= 0.500			
	-		Inlet	/ Outlet Invert= 49	98.50'/498.00' S	S= 0.0135 '/' Cc= 0.90	00			
			n= 0	.013, Flow Area=	1.23 sf					
#2	Device 1	50	0.00' 1.0''	Vert. Orifice/Grat	e C= 0.600 Lin	nited to weir flow at lo	w heads			
#3	Device 1	50	2.00' 24.0 '	' x 24.0" Horiz. O	rifice/Grate C=	0.600				
			Limit	ted to weir flow at	low heads					
Primary	OutFlow	Max=0.00) cfs @ 1.00	hrs HW=497.00	' TW=498.00' (D	ynamic Tailwater)				

1=Culvert (Controls 0.00 cfs)

-2=Orifice/Grate (Controls 0.00 cfs)

3=Orifice/Grate (Controls 0.00 cfs)

Summary for Subcatchment 1S: REMAINDER FLOW TO CB3P

Runoff = 0.00 cfs @ 1.00 hrs, Volume= 0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2yr Rainfall=2.76"

HydroCAD® 10.10-4a s/n 11004 © 2020 HydroCAD Software Solutions LLC

	A	rea (sf)	CN	Description								
*		2,004	98	Existing roa	dway, HSG	à A						
		35,850	39	>75% Gras	s cover, Go	od, HSG A						
		64,959	30	30 Woods, Good, HSG A								
	1	02,813	34	Weighted A	verage							
	1	00,809		98.05% Per	vious Area							
		2,004		1.95% Impe	ervious Area	3						
	Tc	Length	Slope	e Velocity	Capacity	Description						
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)							
	10.9	100	0.1300	0.15		Sheet Flow, WOODS						
						Woods: Light underbrush n= 0.400 P2= 2.76"						
	8.1	646	0.0710) 1.33		Shallow Concentrated Flow, WOODS						
						Woodland Kv= 5.0 fps						
	0.1	45	0.0200	0 6.13	24.53	Parabolic Channel, ROADSIDE SWALE						
						W=6.00' D=1.00' Area=4.0 sf Perim=6.4'						
						n= 0.025 Earth, clean & winding						
	19.1	791	Total									

Summary for Pond 2P: CATCH BASIN

Inflow Area	=	5.689 ac, 1	1.43% Impe	ervious, Inflow I	Depth = 0.0	00" for 2yr event
Inflow	=	0.00 cfs @	22.22 hrs,	Volume=	0.000 af	
Outflow	=	0.00 cfs @	22.22 hrs,	Volume=	0.000 af,	Atten= 0%, Lag= 0.0 min
Discarded	=	0.00 cfs @	22.22 hrs,	Volume=	0.000 af	
Primary	=	0.00 cfs @	1.00 hrs,	Volume=	0.000 af	

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 484.00' @ 1.00 hrs Surf.Area= 0.010 ac Storage= 0.000 af Flood Elev= 488.00' Surf.Area= 0.010 ac Storage= 0.019 af

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (1,241.2 - 1,241.2)

Volume	Invert	Avail.Storage	Storage Description
#1	484.00'	0.017 af	6.00'W x 75.00'L x 4.00'H Prismatoid
#2	484.25'	0.002 af	0.041 af Overall x 40.0% Voids 15.0'' Round Pipe Storage L= 75.0'
		0.019 af	Total Available Storage
Device	Routing	Invert Ou	utlet Devices
#1	Primary	484.30' 15 Inl n=	5.0" Round Culvert L= 50.0' CPP, square edge headwall, Ke= 0.500 let / Outlet Invert= $484.30' / 483.80'$ S= 0.0100 '/' Cc= 0.900 = 0.010 PVC, smooth interior, Flow Area= 1.23 sf
#2	Discarded	484.00' 3.0	000 in/hr Exfiltration over Surface area

Prepared by HP HydroCAD® 10.10-4a s/n 11004 © 2020 HydroCAD Software Solutions LLC

Discarded OutFlow Max=0.00 cfs @ 22.22 hrs HW=484.00' (Free Discharge) **2=Exfiltration** (Passes 0.00 cfs of 0.03 cfs potential flow)

Primary OutFlow Max=0.00 cfs @ 1.00 hrs HW=484.00' TW=0.00' (Dynamic Tailwater)

Summary for Subcatchment 2S: FLOW TO WETLAND

Runoff = 0.00 cfs @

s @ 1.00 hrs, Volume=

0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2yr Rainfall=2.76"

Ar	rea (sf)	CN	Adj Desc	ription					
	2,004	98	Unco	onnected ro	ofs, HSG A				
	1,076	98	Pave	Paved parking, HSG A					
	20,000	39	>75%	6 Grass cov	ver, Good, HSG A				
	45,170	30	Woo	ds, Good, H	ISG A				
	85,506	39	>75%	6 Grass cov	ver, Good, HSG A				
1	61,412	30	Woo	ds, Good, H	ISG A				
3	15,168	34	33 Weig	hted Avera	ige, UI Adjusted				
3	12,088		99.02	2% Perviou	s Area				
	3,080		0.989	% Impervio	us Area				
	2,004		65.06	5% Unconn	ected				
_		-		- ·					
TC	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
13.3	100	0.0800	0.13		Sheet Flow,				
					Woods: Light underbrush n= 0.400 P2= 2.76"				
9.5	900	0.1000	1.58		Shallow Concentrated Flow,				
					Woodland Kv= 5.0 fps				
12.4	365	0.0010	0.49	10.99	Trap/Vee/Rect Channel Flow,				
					Bot.W=30.00' D=0.50' Z= 30.0 '/' Top.W=60.00'				
					n= 0.050				
35.2	1,365	Total							

Summary for Subcatchment 3S: FLOW TO POND

Runoff = 0.00 cfs @ 1.00 hrs, Volume= 0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2yr Rainfall=2.76"

Prepared by HP HydroCAD® 10.10-4a s/n 11004 © 2020 HydroCAD Software Solutions LLC

	Are	ea (sf)	CN	Description		
		2,004	98	Roofs, HSC	λA	
*		6,098	98	Paved road	way, HSG /	Α
		3,615	98	Paved park	ing, HSG A	
	5	3,013	39	>75% Gras	s cover, Go	ood, HSG A
	4	3,821	30	Woods, Go	od, HSG A	
	10	8,551	42	Weighted A	verage	
	9	6,834		89.21% Per	vious Area	
	1	1,717		10.79% Imp	pervious Are	ea
-	Тс	Length	Slop	e Velocity	Capacity	Description
(mi	<u>n)</u>	(feet)	(ft/f	t) (ft/sec)	(cfs)	
14	.0	100	0.070	0 0.12		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 2.76"
0	.7	90	0.200	0 2.24		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
0).1	25	0.330	0 4.02		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
2	.2	412	0.030	0 3.13	9.39	Trap/Vee/Rect Channel Flow,
						Bot.W=0.00' D=1.00' Z= 3.0 '/' Top.W=6.00'
						n= 0.050

17.0 627 Total

Summary for Pond 4P: MICRO POOL POND 2

Inflow Area	a =	3.161 ac, 1	8.40% Impervious,	Inflow Depth = $0.$	04" for 2yr event
Inflow	=	0.10 cfs @	12.12 hrs, Volume	= 0.011 af	
Outflow	=	0.00 cfs @	1.00 hrs, Volume	= 0.000 af,	Atten= 100%, Lag= 0.0 min
Primary	=	0.00 cfs @	1.00 hrs, Volume	= 0.000 af	-

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 485.89' @ 24.40 hrs Surf.Area= 440 sf Storage= 493 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no outflow)

Volume	Invert	Avai	I.Storage	Storage Description						
#1	484.00'		4,477 cf	Custon	n Stage Data (Pris	smatic) Listed below (Recalc)				
Elevation (feet)	Surf.A (so	vrea q-ft)	Inc (cubic	.Store c-feet)	Cum.Store (cubic-feet)					
484.00 486.00 486.90 487.00 488.00 489.00	1, 1, 2	80 460 750 051 633 288		0 540 544 90 1,342 1 961	0 540 1,084 1,175 2,517 4 477					

Prepared by HP HydroCAD® 10.10-4a s/n 11004 © 2020 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	484.80'	15.0" Round Culvert L= 46.7' Ke= 0.500
			Inlet / Outlet Invert= 484.80' / 484.40' S= 0.0086 '/' Cc= 0.900
			n= 0.013, Flow Area= 1.23 sf
#2	Device 1	487.00'	1.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Device 1	488.25'	24.0'' x 24.0'' Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
Primary	OutFlow N	Max=0.00 cfs @	2 1.00 hrs HW=484.00' TW=484.00' (Dynamic Tailwater)

1=Culvert (Controls 0.00 cfs)

2=Orifice/Grate (Controls 0.00 cfs)

-3=Orifice/Grate (Controls 0.00 cfs)

Summary for Subcatchment 4S: FLOW TO CB 2P

Runoff = 0.00 cfs @ 22.22 hrs, Volume= 0.000 af, Depth= 0.01"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2yr Rainfall=2.76"

Area (sf)	CN	Description
972	98	Paved roadway, HSG A
4,670	39	>75% Grass cover, Good, HSG A
1,650	30	Woods, Good, HSG A
7,292	45	Weighted Average
6,320		86.67% Pervious Area
972		13.33% Impervious Area
Tc Length	Slop (ft/	be Velocity Capacity Description ft) (ft/sec) (cfs)
	Area (sf) 972 4,670 1,650 7,292 6,320 972 Tc Length in) (feet)	Area (sf) CN 972 98 4,670 39 1,650 30 7,292 45 6,320 972 Tc Length Slop inin) (feet) (ft/

6.0

Direct Entry,

Summary for Reach 5R: ROADSIDE DITCH

Inflow A	Area	=	2.823 ac,	15.41% Imp	ervious,	Inflow	Depth =	0.0)0" f	or 2yı	r event	
Inflow	=	=	0.00 cfs @	1.00 hrs,	Volume	=	0.000	af		•		
Outflov	V =	=	0.00 cfs @	1.00 hrs,	Volume	=	0.000	af,	Atten=	= 0%,	Lag=	0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 1.00 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 1.00' Flow Area= 3.0 sf, Capacity= 11.71 cfs

0.00' x 1.00' deep channel, n= 0.050 Side Slope Z-value= 3.0 '/' Top Width= 6.00' Length= 180.0' Slope= 0.0467 '/' Inlet Invert= 498.00', Outlet Invert= 489.60'

KEARSARGE MTN RD WARNER POST 7-23-24 - Copy Prepared by HP

Type III 24-hr 2yr Rainfall=2.76" Printed 7/24/2024 Page 10

HydroCAD® 10.10-4a s/n 11004 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 5S: TO LOWER POND

Runoff = 0.10 cfs @ 12.12 hrs, Volume= 0.011 af, Depth= 0.40"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2yr Rainfall=2.76"

Area	(sf) CN	Description				
8,	,362 39	>75% Grass	cover, Go	od, HSG A		
6,	,389 98	Paved parkir	ng, HSG A			
14,	,751 65	Weighted Av	rage			
8,	,362	56.69% Perv	vious Area			
6,	,389	43.31% Impe	ervious Are	ea		
Tala	anath Clan		Consoltu	Description		
(min) ((foot) (ft/f	t) (ft/soc)		Description		
<u> (IIIII) (</u> 60		(1/Sec)	(015)	Direct Entr	v	
0.0				Direct Entry	y ,	
	Su	mmary for F	Pond 6P:	EXISTING	EXTEN	DED CULVERT
Inflow Area	= 2.36	0 ac. 1.95%	, Imperviou	us. Inflow De	epth = 0.0	00" for 2vr event
Inflow =	= 0.00	cfs @ 1.00	hrs, Volur	me=	0.000 af	
Outflow =	= 0.00	cfs @ 1.00	hrs, Volur	ne=	0.000 af,	Atten= 0%, Lag= 0.0 min
Primary =	= 0.00	cfs @ 1.00	hrs, Volur	me=	0.000 af	
Routing by I	Dvn-Stor-Ind	method Time	- Snan- 1	00-36 00 hrs	: dt= 0.05	hrs
Peak Elev=	487.73' @ 1	.00 hrs Surf.	Area= 12 s	of Storage=	0 cf	
				· ·		
Plug-Flow d	detention time	e= (not calcula	ated: initial	storage exc	eeds outflo	(wc
Center-of-N	lass det. time	e= (not calcula	ated: no inf	low)		
Volume	Invert	Avail.Storage	Storage	Description		
#1	487.73'	1,003 cf	Custom	Stage Data	(Prismatio	c) Listed below (Recalc)
Elevation	Surf A	rea Ir	nc Store	Cum Sto	ore	
(feet)	(sc	n-ft) (cub	pic-feet)	(cubic-fe	et)	
487.73	,	12	0	,	0	
488.00		50	8		8	
490.00	ę	945	995	1,0	03	
Device Ro	outing	Invert Ou	itlet Device	es		
#1 Pr	rimary	487.83' 15	.0" Round		= 62.0' Ke	e= 0.500
		Inle	et / Outlet I	nvert = 487.8	33' / 484.40	0° S= 0.0553 ⁻ / CC= 0.900
		n=	0.013, Flo	ow Area= 1.2	23 ST	

Primary OutFlow Max=0.00 cfs @ 1.00 hrs HW=487.73' TW=484.00' (Dynamic Tailwater)

Summary for Subcatchment 7S: TO INLET PIPE

Runoff = 0.17 cfs @ 12.11 hrs, Volume= 0.015 af, Depth= 0.55"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2yr Rainfall=2.76"

A	rea (sf)	CN	Description					
	7,233	98	Paved parking, HSG A					
	7,166	39	75% Grass cover, Good, HSG A					
	14,399	69	Neighted Average					
	7,166		49.77% Pervious Area					
	7,233		50.23% Impervious Area					
Tc (min)	Length (feet)	Slop (ft/f	be Velocity Capacity Description					

6.0

Direct Entry,

Summary for Pond 8P: CULVERT

Inflow Area	ι =	0.331 ac,	50.23% Impervic	ous, Inflow De	pth = 0.55"	for 2yr event
Inflow	=	0.17 cfs @	12.11 hrs, Volu	ume= (0.015 af	
Outflow	=	0.16 cfs @	12.13 hrs, Volu	ume= (0.015 af, Atte	en= 3%, Lag= 0.9 min
Primary	=	0.16 cfs @	12.13 hrs, Volu	ume= (0.015 af	-

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 499.62' @ 12.13 hrs Surf.Area= 70 sf Storage= 10 cf

Plug-Flow detention time= 2.3 min calculated for 0.015 af (100% of inflow) Center-of-Mass det. time= 2.3 min (894.5 - 892.2)

Volume	Inv	ert Avail.S	torage S	<u>torage De</u>	escription		
#1	499.	40'	253 cf C	ustom St	tage Data (Prism	atic) Listed below (Recalc)
Elevatio (fee	on :t)	Surf.Area (sq-ft)	Inc.S [.] (cubic-f	tore eet)	Cum.Store (cubic-feet)		
499.4	0	25		0	0		
500.0	0	150		53	53		
501.0	00	250		200	253		
Device	Routing	Inver	t Outlet	Devices			
#1	Primary	499.40)' 15.0'' Inlet / (n= 0.0	Round Co Outlet Invo 13, Flow	ulvert L= 80.0' ert= 499.40' / 499 Area= 1.23 sf	Ke= 0.500 3.00' S= 0.0050 '/'	Cc= 0.900

Primary OutFlow Max=0.16 cfs @ 12.13 hrs HW=499.61' TW=497.38' (Dynamic Tailwater) 1=Culvert (Barrel Controls 0.16 cfs @ 1.72 fps)

Summary for Link POA1: POA1 AT KEARSARGE MTN RD

Inflow Are	a =	5.689 ac, 1	1.43% Impe	ervious,	Inflow	Depth =	0.0	0" for 2yr	^r event	
Inflow	=	0.00 cfs @	1.00 hrs,	Volume	=	0.000	af			
Primary	=	0.00 cfs @	1.00 hrs,	Volume	=	0.000	af, A	Atten= 0%,	Lag= 0.0 n	nin

Primary outflow = Inflow, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Summary for Link POA2: AT WETLAND

Inflow Are	ea =	7.235 ac,	0.98% Impervious,	Inflow Depth =	0.00" for 2	yr event
Inflow	=	0.00 cfs @	1.00 hrs, Volume	= 0.000 a	af	
Primary	=	0.00 cfs @	1.00 hrs, Volume	= 0.000 a	af, Atten= 0%	, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

KEARSARGE MTN RD WARNER POST 7-23-24 - Copy Prepared by HP HydroCAD® 10.10-4a s/n 11004 © 2020 HydroCAD Software Solutions LLC

Time span=1.00-36.00 hrs, dt=0.05 hrs, 701 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Pond 1P: MICRO POOL 1	Peak Elev=500.22' Storage=2,167 cf Inflow=0.46 cfs 0.056 af Outflow=0.01 cfs 0.014 af
Subcatchment 1S: REMAINDER FLOW TO	Runoff Area=102,813 sf 1.95% Impervious Runoff Depth=0.00" Flow Length=791' Tc=19.1 min CN=34 Runoff=0.00 cfs 0.000 af
Pond 2P: CATCH BASIN Discarded=0.01	Peak Elev=484.00' Storage=0.000 af Inflow=0.01 cfs 0.015 af cfs 0.015 af Primary=0.00 cfs 0.000 af Outflow=0.01 cfs 0.015 af
Subcatchment 2S: FLOW TO WETLAND Flow Length=	Runoff Area=315,168 sf 0.98% Impervious Runoff Depth=0.00" 1,365' Tc=35.2 min UI Adjusted CN=33 Runoff=0.00 cfs 0.000 af
Subcatchment 3S: FLOW TO POND	Runoff Area=108,551 sf 10.79% Impervious Runoff Depth=0.11" Flow Length=627' Tc=17.0 min CN=42 Runoff=0.04 cfs 0.022 af
Pond 4P: MICRO POOL POND 2	Peak Elev=487.20' Storage=1,391 cf Inflow=0.36 cfs 0.043 af Outflow=0.01 cfs 0.012 af
Subcatchment 4S: FLOW TO CB 2P	Runoff Area=7,292 sf 13.33% Impervious Runoff Depth=0.18" Tc=6.0 min CN=45 Runoff=0.01 cfs 0.003 af
Reach 5R: ROADSIDE DITCH	Avg. Flow Depth=0.07' Max Vel=0.69 fps Inflow=0.01 cfs 0.014 af 180.0' S=0.0467 '/' Capacity=11.71 cfs Outflow=0.01 cfs 0.014 af
Subcatchment 5S: TO LOWER POND	Runoff Area=14,751 sf 43.31% Impervious Runoff Depth=1.04" Tc=6.0 min CN=65 Runoff=0.36 cfs 0.029 af
Pond 6P: EXISTING EXTENDED CULVERT 15.0" Rou	Peak Elev=487.84' Storage=2 cf Inflow=0.00 cfs 0.000 af nd Culvert n=0.013 L=62.0' S=0.0553 '/' Outflow=0.00 cfs 0.000 af
Subcatchment 7S: TO INLET PIPE	Runoff Area=14,399 sf 50.23% Impervious Runoff Depth=1.28" Tc=6.0 min CN=69 Runoff=0.46 cfs 0.035 af
Pond 8P: CULVERT 15.0" Rou	Peak Elev=500.22' Storage=88 cf Inflow=0.46 cfs 0.035 af nd Culvert n=0.013 L=80.0' S=0.0050 '/' Outflow=0.46 cfs 0.034 af
Link POA1: POA1 AT KEARSARGE MTN RD	Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af
Link POA2: AT WETLAND	Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af
Total Runoff Area = 12.924	ac Runoff Volume = 0.089 af Average Runoff Depth = 0.08"

94.42% Pervious = 12.203 ac 5.58% Impervious = 0.721 ac

Summary for Pond 1P: MICRO POOL 1

Inflow Area	a =	2.823 ac, 1	5.41% Imperviou	s, Inflow De	epth > 0.24"	for 10YR event
Inflow	=	0.46 cfs @	12.11 hrs, Volur	ne=	0.056 af	
Outflow	=	0.01 cfs @	24.18 hrs, Volur	ne=	0.014 af, Atte	en= 98%, Lag= 723.9 min
Primary	=	0.01 cfs @	24.18 hrs, Volur	ne=	0.014 af	

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 500.22' @ 24.18 hrs Surf.Area= 3,038 sf Storage= 2,167 cf

Plug-Flow detention time= 856.8 min calculated for 0.014 af (25% of inflow) Center-of-Mass det. time= 640.6 min (1,583.8 - 943.3)

Volume	Inve	ert Avai	I.Storage	Storage Descript	ion		
#1	497.0	00'	13,398 cf	Custom Stage D	ata (Irregular) Lis	ted below (Recalc)	
Elevatio	on	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(fee	et)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
497.0	00	150	48.0	0	0	150	
498.0	00	325	66.0	232	232	323	
499.9	90	875	102.0	1,098	1,330	830	
500.0	00	2,895	237.0	179	1,508	4,472	
502.0	00	4,310	276.0	7,158	8,667	6,145	
503.0	00	5,165	294.0	4,731	13,398	7,009	
Device	Routing	In	vert Outle	et Devices			
#1	Primary	498	5.50' 15.0' Inlet n= 0	' Round Culvert / Outlet Invert= 49 .013. Flow Area=	L= 37.0' CPP, s 98.50' / 498.00' S 1.23 sf	square edge headwal S= 0.0135 '/' Cc= 0.9	I, Ke= 0.500 00
#2	Device 1	500	.00' 1.0''	Vert. Orifice/Grat	e C= 0.600 Lin	nited to weir flow at lo	w heads
#3	Device 1	502	.00' 24.0' Limit	' x 24.0'' Horiz. O ed to weir flow at	rifice/Grate C= low heads	0.600	
Primary	OutFlow	Max=0.01	cfs @ 24.1	8 hrs HW=500.2	2' TW=498.07' ((Dynamic Tailwater)	

-1=Culvert (Passes 0.01 cfs of 6.19 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.01 cfs @ 2.05 fps)

-3=Orifice/Grate (Controls 0.00 cfs)

Summary for Subcatchment 1S: REMAINDER FLOW TO CB3P

Runoff = 0.00 cfs @ 24.03 hrs, Volume= 0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10YR Rainfall=4.02"

Prepared by HP HydroCAD® 10.10-4a s/n 11004 © 2020 HydroCAD Software Solutions LLC

_	Ai	rea (sf)	CN	Description								
*		2,004	98	Existing roa	isting roadway, HSG A							
		35,850	39	>75% Gras	5% Grass cover, Good, HSG A							
		64,959	30	Woods, Go	ods, Good, HSG A							
	1	02,813	34	Weighted A	verage							
	1	00,809		98.05% Per	vious Area							
		2,004		1.95% Impe	ervious Area	a						
	Tc	Length	Slope	e Velocity	Capacity	Description						
	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)							
	10.9	100	0.1300	0.15		Sheet Flow, WOODS						
						Woods: Light underbrush n= 0.400 P2= 2.76"						
	8.1	646	0.0710	0 1.33		Shallow Concentrated Flow, WOODS						
						Woodland Kv= 5.0 fps						
	0.1	45	0.0200	0 6.13	24.53	Parabolic Channel, ROADSIDE SWALE						
						W=6.00' D=1.00' Area=4.0 sf Perim=6.4'						
_						n= 0.025 Earth, clean & winding						
	19.1	791	Total									

Summary for Pond 2P: CATCH BASIN

Inflow Area	a =	5.689 ac, 1	1.43% Impe	ervious, Inflow	Depth > 0.	03" for 10\	'R event
Inflow	=	0.01 cfs @	23.99 hrs,	Volume=	0.015 af		
Outflow	=	0.01 cfs @	23.99 hrs, \	Volume=	0.015 af,	Atten= 0%,	Lag= 0.0 min
Discarded	=	0.01 cfs @	23.99 hrs, \	Volume=	0.015 af		
Primary	=	0.00 cfs @	1.00 hrs, V	Volume=	0.000 af		

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 484.00' @ 1.00 hrs Surf.Area= 0.010 ac Storage= 0.000 af Flood Elev= 488.00' Surf.Area= 0.010 ac Storage= 0.019 af

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= (not calculated: outflow precedes inflow)

Volume	Invert	Avail.Storage	Storage Description
#1	484.00'	0.017 af	6.00'W x 75.00'L x 4.00'H Prismatoid
#2	484.25'	0.002 af	0.041 af Overall x 40.0% Voids 15.0" Round Pipe Storage L= 75.0'
		0.019 af	Total Available Storage
Device	Routing	Invert Ou	utlet Devices
#1	Primary	484.30' 15 Inl n=	.0'' Round Culvert L= 50.0' CPP, square edge headwall, Ke= 0.500 et / Outlet Invert= 484.30' / 483.80' S= 0.0100 '/' Cc= 0.900 0.010 PVC, smooth interior, Flow Area= 1.23 sf
#2	Discarded	484.00' 3.0	000 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.00 cfs @ 23.99 hrs HW=484.00' (Free Discharge) **2=Exfiltration** (Passes 0.00 cfs of 0.03 cfs potential flow)

Primary OutFlow Max=0.00 cfs @ 1.00 hrs HW=484.00' TW=0.00' (Dynamic Tailwater) **1=Culvert** (Controls 0.00 cfs)

Summary for Subcatchment 2S: FLOW TO WETLAND

Runoff = 0.0

0.00 cfs @ 1.00 hrs, Volume=

0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10YR Rainfall=4.02"

A	rea (sf)	CN	Adj Desc	ription					
	2,004	98	Unco	nconnected roofs, HSG A					
	1,076	98	Pave	ed parking,	HSG A				
	20,000	39	>75%	6 Grass cov	ver, Good, HSG A				
	45,170	30	Woo	ds, Good, H	ISG A				
	85,506	39	>75%	6 Grass cov	ver, Good, HSG A				
1	61,412	30	Woo	ds, Good, H	HSG A				
3	15,168	34	33 Weig	Weighted Average, UI Adjusted					
3	12,088		99.02	2% Perviou	s Area				
	3,080		0.989	% Impervio	us Area				
	2,004		65.06	6% Unconn	ected				
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
13.3	100	0.0800	0.13		Sheet Flow,				
					Woods: Light underbrush n= 0.400 P2= 2.76"				
9.5	900	0.1000	1.58		Shallow Concentrated Flow,				
					Woodland Kv= 5.0 fps				
12.4	365	0.0010	0.49	10.99	Trap/Vee/Rect Channel Flow,				
					Bot.W=30.00' D=0.50' Z= 30.0 '/' Top.W=60.00'				
					n= 0.050				
35.2	1.365	Total							

Summary for Subcatchment 3S: FLOW TO POND

Runoff = 0.04 cfs @ 14.82 hrs, Volume= 0.022 af, Depth= 0.11"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10YR Rainfall=4.02"

Prepared by HP HydroCAD® 10.10-4a s/n 11004 © 2020 HydroCAD Software Solutions LLC

_	Α	rea (sf)	CN	Description		
		2,004	98	Roofs, HSC	λA	
*		6,098	98	Paved road	way, HSG /	Α
		3,615	98	Paved park	ing, HSG A	
		53,013	39	>75% Gras	s cover, Go	ood, HSG A
		43,821	30	Woods, Go	od, HSG A	
	1	08,551	42	Weighted A	verage	
		96,834		89.21% Per	vious Area	
		11,717		10.79% Imp	pervious Are	ea
	Тс	Length	Slop	e Velocity	Capacity	Description
_	(min)	(feet)	(ft/f) (ft/sec)	(cfs)	
	14.0	100	0.070	0 0.12		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 2.76"
	0.7	90	0.200	0 2.24		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	0.1	25	0.330	0 4.02		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	2.2	412	0.030	0 3.13	9.39	Trap/Vee/Rect Channel Flow,
						Bot.W=0.00' D=1.00' Z= 3.0 '/' Top.W=6.00'
						n= 0.050

17.0 627 Total

Summary for Pond 4P: MICRO POOL POND 2

Inflow Area	a =	3.161 ac, 1	8.40% Impervio	ous, Inflow [Depth >	0.16"	for 10YF	R event
Inflow	=	0.36 cfs @	12.10 hrs, Vol	ume=	0.043 a	af		
Outflow	=	0.01 cfs @	26.60 hrs, Vol	ume=	0.012 a	af, Atter	ı= 97%,	Lag= 869.5 min
Primary	=	0.01 cfs @	26.60 hrs, Vol	ume=	0.012 a	af		

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 487.20' @ 26.60 hrs Surf.Area= 1,165 sf Storage= 1,391 cf

Plug-Flow detention time= 968.8 min calculated for 0.012 af (28% of inflow) Center-of-Mass det. time= 597.5 min (1,700.9 - 1,103.4)

Volume	Invert Av	ail.Storage	Storag	e Description	
#1	484.00'	4,477 cf	Custor	n Stage Data (Pris	matic) Listed below (Recalc)
Elevation (feet)	Surf.Area (sq-ft	a Inc) (cubi	:.Store c-feet)	Cum.Store (cubic-feet)	
484.00 486.00 486.90 487.00 488.00 489.00	80 460 750 1,05 1,63 2,28)) 1 3	0 540 544 90 1,342 1 961	0 540 1,084 1,175 2,517 4,477	

Type III 24-hr 10YR Rainfall=4.02" Printed 7/24/2024 Page 18

HydroCAD® 10.10-4a s/n 11004 © 2020 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	484.80'	15.0" Round Culvert L= 46.7' Ke= 0.500
	-		Inlet / Outlet Invert= 484.80' / 484.40' S= 0.0086 '/' Cc= 0.900
			n= 0.013, Flow Area= 1.23 sf
#2	Device 1	487.00'	1.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Device 1	488.25'	24.0'' x 24.0'' Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=0.01 cfs @ 26.60 hrs HW=487.20' TW=484.00' (Dynamic Tailwater) 1=Culvert (Passes 0.01 cfs of 7.61 cfs potential flow) 2=Orifice/Grate (Orifice Controls 0.01 cfs @ 1.89 fps)

3=Orifice/Grate (Controls 0.00 cfs)

Prepared by HP

Summary for Subcatchment 4S: FLOW TO CB 2P

Runoff = 0.01 cfs @ 12.45 hrs, Volume= 0.003 af, Depth= 0.18"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10YR Rainfall=4.02"

	Area (sf)	CN	Description						
*	972	98	Paved roadway, HSG A						
	4,670	39	% Grass cover, Good, HSG A						
	1,650	30	ods, Good, HSG A						
	7,292	45	Weighted Average						
	6,320		86.67% Pervious Area						
	972		13.33% Impervious Area						
	Tc Length	Slop	Velocity Capacity Description						
(n	nin) (feet)	(ft/	ft) (ft/sec) (cfs)						

6.0

Direct Entry,

Summary for Reach 5R: ROADSIDE DITCH

Inflow .	Area =	=	2.823 ac,	15.41% Imp	ervious,	Inflow	Depth >	0.06	6" for 10	YR event
Inflow	=		0.01 cfs @	24.18 hrs,	Volume	=	0.014	af		
Outflov	v =		0.01 cfs @	24.23 hrs,	Volume	=	0.014	af, A	Atten= 0%,	Lag= 3.3 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Max. Velocity= 0.69 fps, Min. Travel Time= 4.4 min Avg. Velocity = 0.63 fps, Avg. Travel Time= 4.7 min

Peak Storage= 3 cf @ 24.23 hrs Average Depth at Peak Storage= 0.07', Surface Width= 0.44' Bank-Full Depth= 1.00' Flow Area= 3.0 sf, Capacity= 11.71 cfs

0.00' x 1.00' deep channel, n= 0.050 Side Slope Z-value= 3.0 '/' Top Width= 6.00' Length= 180.0' Slope= 0.0467 '/' Inlet Invert= 498.00', Outlet Invert= 489.60' KEARSARGE MTN RD WARNER POST 7-23-24 - Copy Prepared by HP Type III 24-hr 10YR Rainfall=4.02" Printed 7/24/2024 Page 19

HydroCAD® 10.10-4a s/n 11004 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 5S: TO LOWER POND

Runoff = 0.36 cfs @ 12.10 hrs, Volume= 0.029 af, Depth= 1.04"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10YR Rainfall=4.02"

Area (sf)	CN Descript	on		
8,362	39 >75% Gi	ass cover, Good,	HSG A	
6,389	98 Paved pa	arking, HSG A		
14,751	65 Weighte	d Average		
8,362	56.69%	Pervious Area		
6,389	43.31%	mpervious Area		
		-		
Tc Lengt	h Slope Veloc	ty Capacity De	escription	
(min) (fee	t) (ft/ft) (ft/se	c) (cts)		
6.0		Di	rect Entry,	
	Summary f	or Pond 6P: EX	(ISTING E)	XTENDED CULVERT
Inflow Area -	2 360 ac 1	95% Impervious	Inflow Denth	h – 0.00" for 10YB event
Inflow =	$0.00 \mathrm{cfs} @ 24$	1.03 hrs. Volume	= 0.0	000 af
Outflow =	0.00 cfs @ 24	4.05 hrs, Volume	= 0.0	000 af, Atten= 1%, Lag= 1.4 min
Primary =	0.00 cfs @ 24	4.05 hrs,́Volume₌	= 0.0	000 af
Deutine hu Due		Time Crean 100	00.00 hrs. dt	
Peak Elev= 487	-Stor-Ind method, 7 84' @ 24 05 hrs	Surf Area= 28 sf	Storage= 2	le 0.05 nrs ? cf
			otorugo- 2	
Plug-Flow dete	ntion time= 45.9 m	in calculated for 0	.000 af (77%	6 of inflow)
Center-of-Mass	det. time= 28.7 m	in(1,414.0-1,38	5.3)	
Volume I	nvert Avail.Sto	age Storage De	escription	
#1 48	7.73' 1,00	3 cf Custom St	age Data (Pr	rismatic) Listed below (Recalc)
-	o ()		a a	
Elevation	Surf.Area	Inc.Store	Cum.Store	
	(sq-tt)		(CUDIC-TEET)	
487.73	12	0	0	
488.00	5U 045	8 005	8 1 002	
490.00	940	995	1,003	
Device Routir	ng Invert	Outlet Devices		
#1 Prima	ry 487.83'	15.0" Round Cu	ulvert L= 62	2.0' Ke= 0.500
	-	Inlet / Outlet Inve	ert= 487.83' /	/ 484.40' S= 0.0553 '/' Cc= 0.900
		n= 0.013, Flow	Area= 1.23 s	sf

Primary OutFlow Max=0.00 cfs @ 24.05 hrs HW=487.84' TW=484.00' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.00 cfs @ 0.41 fps)

Summary for Subcatchment 7S: TO INLET PIPE

Runoff = 0.46 cfs @ 12.10 hrs, Volume= 0.035 af, Depth= 1.28"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10YR Rainfall=4.02"

A	rea (sf)	CN	Description
	7,233	98	Paved parking, HSG A
	7,166	39	>75% Grass cover, Good, HSG A
	14,399	69	Weighted Average
	7,166		49.77% Pervious Area
	7,233		50.23% Impervious Area
Tc (min)	Length	Slop	e Velocity Capacity Description

6.0

Direct Entry,

Summary for Pond 8P: CULVERT

Inflow Area	a =	0.331 ac, 5	50.23% Impervious,	Inflow Depth =	1.28" for	10YR event
Inflow	=	0.46 cfs @	12.10 hrs, Volume	e 0.035	af	
Outflow	=	0.46 cfs @	12.11 hrs, Volume	= 0.034	af, Atten= 1	%, Lag= 0.7 min
Primary	=	0.46 cfs @	12.11 hrs, Volume	e= 0.034	af	

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 500.22' @ 24.14 hrs Surf.Area= 172 sf Storage= 88 cf

Plug-Flow detention time= 28.2 min calculated for 0.034 af (95% of inflow) Center-of-Mass det. time= 5.5 min (868.7 - 863.2)

Volume	Inv	ert Avail.S	torage	Storage D	escription	
#1	499.	40'	253 cf	Custom S	tage Data (Prisn	natic) Listed below (Recalc)
Elevatio (fee 499.4 500.0 501.0	on it) i0 00 00	Surf.Area (sq-ft) 25 150 250	Inc (cubic	.Store <u>c-feet)</u> 0 53 200	Cum.Store (cubic-feet) 0 53 253	
Device #1	Routing Primary	Inve 499.4(rt Outle)' 15.0 ' Inlet n= 0	et Devices '' Round C / Outlet Inv .013, Flow	ulvert L= 80.0' rert= 499.40' / 49 Area= 1.23 sf	Ke= 0.500 9.00' S= 0.0050 '/' Cc= 0.900

Primary OutFlow Max=0.44 cfs @ 12.11 hrs HW=499.76' TW=498.14' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 0.44 cfs @ 2.29 fps)

Summary for Link POA1: POA1 AT KEARSARGE MTN RD

Inflow Are	a =	5.689 ac, 1	1.43% Impervious,	Inflow Depth = 0	.00" for 10YR event
Inflow	=	0.00 cfs @	1.00 hrs, Volume	= 0.000 af	
Primary	=	0.00 cfs @	1.00 hrs, Volume	= 0.000 af,	, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Summary for Link POA2: AT WETLAND

Inflow Are	ea =	7.235 ac,	0.98% Impervious,	Inflow Depth = 0	.00" for 10YR event
Inflow	=	0.00 cfs @	1.00 hrs, Volume	= 0.000 af	
Primary	=	0.00 cfs @	1.00 hrs, Volume	= 0.000 af,	, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

KEARSARGE MTN RD WARNER POST 7-23-24 - Copy Prepared by HP HydroCAD® 10.10-4a s/n 11004 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 25YR Rainfall=4.98" Printed 7/24/2024 Page 22

Time span=1.00-36.00 hrs, dt=0.05 hrs, 701 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Pond 1P: MICRO POOL 1	Peak Elev=500.82' Storage=4,112 cf Inflow=0.72 cfs 0.114 af Outflow=0.02 cfs 0.039 af
Subcatchment 1S: REMAINDER FLOW TO	Runoff Area=102,813 sf 1.95% Impervious Runoff Depth=0.06" Flow Length=791' Tc=19.1 min CN=34 Runoff=0.02 cfs 0.012 af
Pond 2P: CATCH BASIN Discarded=0.03	Peak Elev=484.32' Storage=0.001 af Inflow=0.04 cfs 0.054 af 3 cfs 0.053 af Primary=0.00 cfs 0.001 af Outflow=0.04 cfs 0.054 af
Subcatchment 2S: FLOW TO WETLAND Flow Length:	Runoff Area=315,168 sf 0.98% Impervious Runoff Depth=0.04" =1,365' Tc=35.2 min UI Adjusted CN=33 Runoff=0.03 cfs 0.024 af
Subcatchment 3S: FLOW TO POND	Runoff Area=108,551 sf 10.79% Impervious Runoff Depth=0.31" Flow Length=627' Tc=17.0 min CN=42 Runoff=0.22 cfs 0.064 af
Pond 4P: MICRO POOL POND 2	Peak Elev=487.75' Storage=2,128 cf Inflow=0.61 cfs 0.085 af Outflow=0.02 cfs 0.037 af
Subcatchment 4S: FLOW TO CB 2P	Runoff Area=7,292 sf 13.33% Impervious Runoff Depth=0.44" Tc=6.0 min CN=45 Runoff=0.03 cfs 0.006 af
Reach 5R: ROADSIDE DITCH	Avg. Flow Depth=0.10' Max Vel=0.83 fps Inflow=0.02 cfs 0.039 af =180.0' S=0.0467 '/' Capacity=11.71 cfs Outflow=0.02 cfs 0.038 af
Subcatchment 5S: TO LOWER POND	Runoff Area=14,751 sf 43.31% Impervious Runoff Depth=1.64" Tc=6.0 min CN=65 Runoff=0.61 cfs 0.046 af
Pond 6P: EXISTING EXTENDED CULVERT 15.0" Rol	Peak Elev=487.89' Storage=4 cf Inflow=0.02 cfs 0.012 af and Culvert n=0.013 L=62.0' S=0.0553 '/' Outflow=0.02 cfs 0.012 af
Subcatchment 7S: TO INLET PIPE	Runoff Area=14,399 sf 50.23% Impervious Runoff Depth=1.94" Tc=6.0 min CN=69 Runoff=0.72 cfs 0.054 af
Pond 8P: CULVERT 15.0" Rou	Peak Elev=500.82' Storage=209 cf Inflow=0.72 cfs 0.054 af ind Culvert n=0.013 L=80.0' S=0.0050 '/' Outflow=0.72 cfs 0.050 af
Link POA1: POA1 AT KEARSARGE MTN RD	Inflow=0.00 cfs 0.001 af Primary=0.00 cfs 0.001 af
Link POA2: AT WETLAND	Inflow=0.03 cfs 0.024 af Primary=0.03 cfs 0.024 af
Total Runoff Area = 12.924	ac Runoff Volume = 0.205 af Average Runoff Depth = 0.19"

94.42% Pervious = 12.203 ac 5.58% Impervious = 0.721 ac

Summary for Pond 1P: MICRO POOL 1

Inflow Area	a =	2.823 ac, 1	5.41% Impervio	us, Inflow D	epth > 0.4	48" for 2	25YR event
Inflow	=	0.72 cfs @	12.11 hrs, Volu	ime=	0.114 af		
Outflow	=	0.02 cfs @	24.17 hrs, Volu	ime=	0.039 af,	Atten= 97	%, Lag= 723.7 min
Primary	=	0.02 cfs @	24.17 hrs, Volu	ime=	0.039 af		

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 500.82' @ 24.17 hrs Surf.Area= 3,443 sf Storage= 4,112 cf

Plug-Flow detention time= 760.3 min calculated for 0.039 af (34% of inflow) Center-of-Mass det. time= 564.4 min (1,497.9 - 933.5)

Volume	Inve	ert Avail	.Storage	Storage Descript	ion		
#1	497.0	0' 1	13,398 cf	Custom Stage D	ata (Irregular) List	ted below (Recalc)	
Elevatio	on	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(fee	et)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
497.0	00	150	48.0	0	0	150	
498.0	00	325	66.0	232	232	323	
499.9	90	875	102.0	1,098	1,330	830	
500.0)0	2,895	237.0	179	1,508	4,472	
502.0)0	4,310	276.0	7,158	8,667	6,145	
503.0	00	5,165	294.0	4,731	13,398	7,009	
Device	Routing	Inv	vert Outle	et Devices			
#1	Primary	498	.50' 15.0'	' Round Culvert	L= 37.0' CPP, s	quare edge headwall	l, Ke= 0.500
			Inlet	/ Outlet Invert= 49	98.50'/498.00' S	= 0.0135 '/' Cc= 0.9	00
			n= 0	.013, Flow Area=	1.23 sf		
#2	Device 1	500	.00' 1.0''	Vert. Orifice/Grate	e C= 0.600 Lim	nited to weir flow at lo	w heads
#3	Device 1	502	.00' 24.0' Limit	' x 24.0'' Horiz. O ed to weir flow at	rifice/Grate C= (low heads	0.600	
Primary	OutFlow	Max=0.02	cfs @ 24.1	7 hrs HW=500.8	2' TW=498.10' (Dynamic Tailwater)	

-1=Culvert (Passes 0.02 cfs of 7.70 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.02 cfs @ 4.26 fps)

-3=Orifice/Grate (Controls 0.00 cfs)

Summary for Subcatchment 1S: REMAINDER FLOW TO CB3P

Runoff = 0.02 cfs @ 15.72 hrs, Volume= 0.012 af, Depth= 0.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25YR Rainfall=4.98"

Prepared by HP HydroCAD® 10.10-4a s/n 11004 © 2020 HydroCAD Software Solutions LLC

	A	rea (sf)	CN	Description		
*		2,004	98	Existing roa	dway, HSG	A A
		35,850	39	>75% Gras	s cover, Go	od, HSG A
		64,959	30	Woods, Go	od, HSG A	
	1	02,813	34	Weighted A	verage	
	1	00,809		98.05% Per	vious Area	
		2,004		1.95% Impe	ervious Area	a
	Tc	Length	Slope	e Velocity	Capacity	Description
_(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	10.9	100	0.1300	0.15		Sheet Flow, WOODS
						Woods: Light underbrush n= 0.400 P2= 2.76"
	8.1	646	0.0710	0 1.33		Shallow Concentrated Flow, WOODS
						Woodland Kv= 5.0 fps
	0.1	45	0.0200	0 6.13	24.53	Parabolic Channel, ROADSIDE SWALE
						W=6.00' D=1.00' Area=4.0 sf Perim=6.4'
						n= 0.025 Earth, clean & winding
	19.1	791	Total			

Summary for Pond 2P: CATCH BASIN

Inflow Area	=	5.689 ac, 1	1.43% Imp	ervious, Inflow	Depth > (0.11"	for 25	YR event	
Inflow	=	0.04 cfs @	15.77 hrs,	Volume=	0.054 at	f			
Outflow	=	0.04 cfs @	21.28 hrs,	Volume=	0.054 at	f, Atter	า= 4%,	Lag= 330.5 mir	۱
Discarded	=	0.03 cfs @	21.28 hrs,	Volume=	0.053 at	f			
Primary	=	0.00 cfs @	21.28 hrs,	Volume=	0.001 at	f			

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 484.32' @ 21.28 hrs Surf.Area= 0.011 ac Storage= 0.001 af Flood Elev= 488.00' Surf.Area= 0.010 ac Storage= 0.019 af

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 13.5 min (1,404.1 - 1,390.6)

Volume	Invert	Avail.Storage	Storage Description
#1	484.00'	0.017 af	6.00'W x 75.00'L x 4.00'H Prismatoid
#2	484.25'	0.002 af	0.041 af Overall x 40.0% Voids 15.0'' Round Pipe Storage L= 75.0'
		0.019 af	Total Available Storage
Device	Routing	Invert Ou	utlet Devices
#1	Primary	484.30' 15 Inl n=	.0'' Round Culvert L= 50.0' CPP, square edge headwall, Ke= 0.500 et / Outlet Invert= 484.30' / 483.80' S= 0.0100 '/' Cc= 0.900 : 0.010 PVC, smooth interior, Flow Area= 1.23 sf
#2	Discarded	484.00' 3.0	000 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.03 cfs @ 21.28 hrs HW=484.32' (Free Discharge)

Primary OutFlow Max=0.00 cfs @ 21.28 hrs HW=484.32' TW=0.00' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 0.00 cfs @ 0.71 fps)

Summary for Subcatchment 2S: FLOW TO WETLAND

Runoff = 0.03 cfs @ 17.40 hrs, Volume= 0.024 af, Depth= 0.04"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25YR Rainfall=4.98"

Ar	ea (sf)	CN	Adj Desc	ription	
	2,004	98	Unco	onnected ro	ofs, HSG A
	1,076	98	Pave	ed parking,	HSG A
	20,000	39	>75%	6 Grass cov	ver, Good, HSG A
	45,170	30	Woo	ds, Good, H	HSG A
	85,506	39	>75%	6 Grass cov	ver, Good, HSG A
1	61,412	30	Woo	ds, Good, H	HSG A
3	15,168	34	33 Weig	ghted Avera	age, UI Adjusted
3	12,088		99.02	2% Perviou	s Area
	3,080		0.989	% Impervio	us Area
	2,004		65.00	5% Unconn	ected
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
13.3	100	0.0800	0.13		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 2.76"
9.5	900	0.1000	1.58		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
12.4	365	0.0010	0.49	10.99	Trap/Vee/Rect Channel Flow,
					Bot.W=30.00' D=0.50' Z= 30.0 '/' Top.W=60.00'
					n= 0.050
35.2	1,365	Total			

Summary for Subcatchment 3S: FLOW TO POND

Runoff = 0.22 cfs @ 12.55 hrs, Volume= 0.064 af, Depth= 0.31"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25YR Rainfall=4.98"

Prepared by HP HydroCAD® 10.10-4a s/n 11004 © 2020 HydroCAD Software Solutions LLC

_	A	rea (sf)	CN	Description		
		2,004	98	Roofs, HSG	ìΑ	
*		6,098	98	Paved road	way, HSG /	Α
		3,615	98	Paved park	ing, HSG A	
		53,013	39	>75% Gras	s cover, Go	od, HSG A
		43,821	30	Woods, Go	od, HSG A	
	1	08,551	42	Weighted A	verage	
		96,834		89.21% Per	vious Area	
		11,717		10.79% Imp	pervious Are	ea
	Tc	Length	Slop	e Velocity	Capacity	Description
_	(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)	
	14.0	100	0.070	0 0.12		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 2.76"
	0.7	90	0.200	0 2.24		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	0.1	25	0.330	0 4.02		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	2.2	412	0.030	0 3.13	9.39	Trap/Vee/Rect Channel Flow,
						Bot.W=0.00' D=1.00' Z= 3.0 '/' Top.W=6.00'
_						n= 0.050

17.0 627 Total

Summary for Pond 4P: MICRO POOL POND 2

Inflow Area	a =	3.161 ac, 1	8.40% Imper	rvious, In	Iflow Depth :	> 0.3	2" for	25YR ev	ent
Inflow	=	0.61 cfs @	12.10 hrs, V	/olume=	0.08	5 af			
Outflow	=	0.02 cfs @	27.54 hrs, V	/olume=	0.03	7 af, <i>1</i>	Atten= 9	6%, Lag	= 926.3 min
Primary	=	0.02 cfs @	27.54 hrs, V	/olume=	0.03	7 af			

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 487.75' @ 27.54 hrs Surf.Area= 1,488 sf Storage= 2,128 cf

Plug-Flow detention time= 769.9 min calculated for 0.037 af (43% of inflow) Center-of-Mass det. time= 392.0 min (1,543.2 - 1,151.2)

Volume	Invert Av	ail.Storage	Storag	e Description	
#1	484.00'	4,477 cf	Custor	n Stage Data (Pris	matic) Listed below (Recalc)
Elevation (feet)	Surf.Area (sq-ft	a Inc) (cubi	:.Store c-feet)	Cum.Store (cubic-feet)	
484.00 486.00 486.90 487.00 488.00 489.00	80 460 750 1,05 1,63 2,28)) 1 3	0 540 544 90 1,342 1 961	0 540 1,084 1,175 2,517 4,477	

Type III 24-hr 25YR Rainfall=4.98" Printed 7/24/2024 Page 27

HydroCAD® 10.10-4a s/n 11004 © 2020 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	484.80'	15.0" Round Culvert L= 46.7' Ke= 0.500
			Inlet / Outlet Invert= 484.80' / 484.40' S= 0.0086 '/' Cc= 0.900
			n= 0.013, Flow Area= 1.23 sf
#2	Device 1	487.00'	1.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Device 1	488.25'	24.0'' x 24.0'' Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads

Primary OutFlow Max=0.02 cfs @ 27.54 hrs HW=487.75' TW=484.00' (Dynamic Tailwater) 1=Culvert (Passes 0.02 cfs of 8.87 cfs potential flow) 2=Orifice/Grate (Orifice Controls 0.02 cfs @ 4.06 fps)

3=Orifice/Grate (Controls 0.00 cfs)

Prepared by HP

Summary for Subcatchment 4S: FLOW TO CB 2P

Runoff = 0.03 cfs @ 12.31 hrs, Volume= 0.006 af, Depth= 0.44"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25YR Rainfall=4.98"

	Area (sf)	CN	Description					
*	972	98	Paved roadway, HSG A					
	4,670	39	>75% Grass cover, Good, HSG A					
	1,650	30	/oods, Good, HSG A					
	7,292	45	Weighted Average					
	6,320		86.67% Pervious Area					
	972		13.33% Impervious Area					
	Tc Length	Slop	pe Velocity Capacity Description					
(n	nin) (feet)	(ft/	ft) (ft/sec) (cfs)					

6.0

Direct Entry,

Summary for Reach 5R: ROADSIDE DITCH

Inflow .	Area	=	2.823 ac,	15.41% Imp	ervious,	Inflow	Depth >	0.16	6" for 25	YR event	
Inflow	:	=	0.02 cfs @	24.17 hrs,	Volume	=	0.039	af			
Outflov	N :	=	0.02 cfs @	24.22 hrs,	Volume	=	0.038	af, A	tten= 0%,	Lag= 2.7	7 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Max. Velocity= 0.83 fps, Min. Travel Time= 3.6 min Avg. Velocity = 0.79 fps, Avg. Travel Time= 3.8 min

Peak Storage= 5 cf @ 24.22 hrs Average Depth at Peak Storage= 0.10', Surface Width= 0.58' Bank-Full Depth= 1.00' Flow Area= 3.0 sf, Capacity= 11.71 cfs

0.00' x 1.00' deep channel, n= 0.050 Side Slope Z-value= 3.0 '/' Top Width= 6.00' Length= 180.0' Slope= 0.0467 '/' Inlet Invert= 498.00', Outlet Invert= 489.60' KEARSARGE MTN RD WARNER POST 7-23-24 - Copy Prepared by HP Type III 24-hr 25YR Rainfall=4.98" Printed 7/24/2024 Page 28

HydroCAD® 10.10-4a s/n 11004 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 5S: TO LOWER POND

Runoff = 0.61 cfs @ 12.10 hrs, Volume= 0.046 af, Depth= 1.64"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25YR Rainfall=4.98"

Area (sf) CN Description							
8,362 39 >75% Grass cover, Good, HSG A							
6,389 98 Paved parking, HSG A							
14,751 65 Weighted Average							
8,362 56.69% Pervious Area							
6,389 43.31% Impervious Area							
Tc Length Slope Velocity Capacity Description							
(min) (feet) (ft/ft) (ft/sec) (Cfs)							
6.0 Direct Entry,							
Summary for Pond 6P: EXISTING EXTENDED CULVERT							
nflow Area = 2.360 ac, 1.95% Impervious, Inflow Depth = 0.06" for 25YR event							
$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Julilow = 0.02 GS @ 15.74 Hrs, Volume = 0.012 al, Allen = 0%, Lag = 1.0 Hill							
-1111ary = 0.02 crs (a) -13.74 rrs, volume = 0.012 ar							
Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs							
-eak Elev= 467.89 @ 15.74 fills Sun.Area= 34 Si Storage= 4 Ci							
Plug-Flow detention time= 4.8 min calculated for 0.012 af (100% of inflow)							
Center-of-Mass det. time= 3.1 min (1,136.3 - 1,133.2)							
Volume Invert Avail.Storage Storage Description	_						
#1 487.73' 1,003 cf Custom Stage Data (Prismatic) Listed below (Recalc)							
Elevation Surf Area Inc Store Cum Store							
(feet) (sq-ft) (cubic-feet) (cubic-feet)							
487.73 12 0 0							
488.00 50 8 8							
490.00 945 995 1,003							
Device Routing Invert Outlet Devices							
#1 Primary 487.83' 15.0" Round Culvert L= 62.0' Ke= 0.500							
Inlet / Outlet Invert= 487.83' / 484.40' S= 0.0553 '/' Cc= 0.900							
n = 0.013, FIOW Area = 1.23 ST							

Primary OutFlow Max=0.02 cfs @ 15.74 hrs HW=487.89' TW=484.11' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.02 cfs @ 0.82 fps)

Summary for Subcatchment 7S: TO INLET PIPE

Runoff = 0.72 cfs @ 12.10 hrs, Volume= 0.054 af, Depth= 1.94"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25YR Rainfall=4.98"

Ar	ea (sf)	CN	Description					
	7,233	98	Paved parking, HSG A					
	7,166	39	>75% Grass cover, Good, HSG A					
-	14,399	69	Weighted Average					
	7,166		49.77% Pervious Area					
	7,233		50.23% Impervious Area					
Tc (min)	Length	Slop	e Velocity Capacity Description					

6.0

Direct Entry,

Summary for Pond 8P: CULVERT

Inflow Area	ι =	0.331 ac, 5	50.23% Impervious	Inflow Depth =	1.94" for	25YR event
Inflow	=	0.72 cfs @	12.10 hrs, Volume)= 0.054	af	
Outflow	=	0.72 cfs @	12.11 hrs, Volume	e 0.050 €	af, Atten= 1	1%, Lag= 0.7 min
Primary	=	0.72 cfs @	12.11 hrs, Volume	≥= 0.050 :	af	

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 500.82' @ 24.06 hrs Surf.Area= 232 sf Storage= 209 cf

Plug-Flow detention time= 52.3 min calculated for 0.050 af (93% of inflow) Center-of-Mass det. time= 18.1 min (868.6 - 850.5)

Volume	Inv	ert Avail.S	torage S	Storage Description					
#1	499.	40'	253 cf (Sustom St	tage Data (Prism	natic) Listed below (Recalc)		
Elevatio (fee	on et)	Surf.Area (sq-ft)	Inc.S (cubic-f	tore eet)	Cum.Store (cubic-feet)				
499.4 500.0 501.0	40 00 00	25 150 250		0 53 200	0 53 253				
Device	Routing	Inve	rt Outlet	Devices					
#1	Primary	499.4)' 15.0'' Inlet / n= 0.0	Round C Outlet Inv 13, Flow	ulvert L= 80.0' ert= 499.40' / 49 Area= 1.23 sf	Ke= 0.500 9.00' S= 0.0050 '/'	Cc= 0.900		

Primary OutFlow Max=0.70 cfs @ 12.11 hrs HW=499.85' TW=498.70' (Dynamic Tailwater) 1=Culvert (Barrel Controls 0.70 cfs @ 2.59 fps)
Summary for Link POA1: POA1 AT KEARSARGE MTN RD

Inflow Area	a =	5.689 ac, 1	11.43% Imp	ervious,	Inflow	Depth =	0.0	00" for 25	YR event	
Inflow	=	0.00 cfs @	21.28 hrs,	Volume	=	0.001	af			
Primary	=	0.00 cfs @	21.28 hrs,	Volume	=	0.001	af,	Atten= 0%,	Lag= 0.0) min

Primary outflow = Inflow, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Summary for Link POA2: AT WETLAND

Inflow Area	a =	7.235 ac,	0.98% Impe	rvious,	Inflow	Depth =	0.04"	for 25	/R event
Inflow	=	0.03 cfs @	17.40 hrs, \	Volume=	=	0.024 a	af		
Primary	=	0.03 cfs @	17.40 hrs, \	Volume=	=	0.024 a	af, Att	en= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

KEARSARGE MTN RD WARNER POST 7-23-24 - Copy Prepared by HP HydroCAD® 10.10-4a s/n 11004 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 50YR Rainfall=5.87" Printed 7/24/2024 Page 31

Time span=1.00-36.00 hrs, dt=0.05 hrs, 701 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Pond 1P: MICRO POOL 1	Peak Elev=501.56' Storage=6,846 cf Inflow=1.04 cfs 0.185 af Outflow=0.03 cfs 0.057 af
Subcatchment 1S: REMAINDER FLOW TO	Runoff Area=102,813 sf 1.95% Impervious Runoff Depth=0.18" Flow Length=791' Tc=19.1 min CN=34 Runoff=0.06 cfs 0.036 af
Pond 2P: CATCH BASIN Discarded=0.04	Peak Elev=484.41' Storage=0.002 af Inflow=0.09 cfs 0.100 af cfs 0.066 af Primary=0.06 cfs 0.033 af Outflow=0.09 cfs 0.100 af
Subcatchment 2S: FLOW TO WETLAND Flow Length	Runoff Area=315,168 sf 0.98% Impervious Runoff Depth=0.15" =1,365' Tc=35.2 min UI Adjusted CN=33 Runoff=0.14 cfs 0.089 af
Subcatchment 3S: FLOW TO POND	Runoff Area=108,551 sf 10.79% Impervious Runoff Depth=0.57" Flow Length=627' Tc=17.0 min CN=42 Runoff=0.61 cfs 0.119 af
Pond 4P: MICRO POOL POND 2	Peak Elev=488.25' Storage=2,949 cf Inflow=0.86 cfs 0.121 af Outflow=0.03 cfs 0.053 af
Subcatchment 4S: FLOW TO CB 2P	Runoff Area=7,292 sf 13.33% Impervious Runoff Depth=0.75" Tc=6.0 min CN=45 Runoff=0.08 cfs 0.010 af
Reach 5R: ROADSIDE DITCH n=0.050 L=	Avg. Flow Depth=0.11' Max Vel=0.90 fps Inflow=0.03 cfs 0.057 af 180.0' S=0.0467 '/' Capacity=11.71 cfs Outflow=0.03 cfs 0.057 af
Subcatchment 5S: TO LOWER POND	Runoff Area=14,751 sf 43.31% Impervious Runoff Depth=2.26" Tc=6.0 min CN=65 Runoff=0.86 cfs 0.064 af
Pond 6P: EXISTING EXTENDED CULVERT 15.0" Rou	Peak Elev=487.94' Storage=6 cf Inflow=0.06 cfs 0.036 af nd Culvert n=0.013 L=62.0' S=0.0553 '/' Outflow=0.06 cfs 0.036 af
Subcatchment 7S: TO INLET PIPE	Runoff Area=14,399 sf 50.23% Impervious Runoff Depth=2.61" Tc=6.0 min CN=69 Runoff=0.98 cfs 0.072 af
Pond 8P: CULVERT 15.0" Rou	Peak Elev=501.56' Storage=253 cf Inflow=0.98 cfs 0.072 af nd Culvert n=0.013 L=80.0' S=0.0050 '/' Outflow=0.98 cfs 0.066 af
Link POA1: POA1 AT KEARSARGE MTN RD	Inflow=0.06 cfs 0.033 af Primary=0.06 cfs 0.033 af
Link POA2: AT WETLAND	Inflow=0.14 cfs 0.089 af Primary=0.14 cfs 0.089 af
Total Runoff Area = 12.924	ac Runoff Volume = 0.390 af Average Runoff Depth = 0.36"

94.42% Pervious = 12.203 ac 5.58% Impervious = 0.721 ac

Summary for Pond 1P: MICRO POOL 1

Inflow Area	a =	2.823 ac, 1	5.41% Impervious,	Inflow Depth =	0.79" for 50YR	event
Inflow	=	1.04 cfs @	12.12 hrs, Volume	e= 0.185 a	ıf	
Outflow	=	0.03 cfs @	24.17 hrs, Volume	e= 0.057 a	If, Atten= 97%, La	ag= 723.0 min
Primary	=	0.03 cfs @	24.17 hrs, Volume	e= 0.057 a	ıf	

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 501.56' @ 24.17 hrs Surf.Area= 3,975 sf Storage= 6,846 cf

Plug-Flow detention time= 748.5 min calculated for 0.057 af (31% of inflow) Center-of-Mass det. time= 566.6 min (1,479.2 - 912.6)

Volume	Inve	ert Ava	il.Storage	Storage Description						
#1	497.0)0'	13,398 cf	Custom Stage D	ata (Irregular) List	ted below (Recalc)				
Elevatio	on	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area				
(fee	et)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)				
497.0	00	150	48.0	0	0	150				
498.0	00	325	66.0	232	232	323				
499.9	90	875	102.0	1,098	1,330	830				
500.0	00	2,895	237.0	179	1,508	4,472				
502.0	00	4,310	276.0	7,158	8,667	6,145				
503.0	00	5,165	294.0	4,731	13,398	7,009				
Device	Routing	Ir	vert Outle	et Devices						
#1	Primary	498	3.50' 15.0'	' Round Culvert	L= 37.0' CPP, s	quare edge headwall	, Ke= 0.500			
	-		Inlet	/ Outlet Invert= 49	98.50' / 498.00' S	S= 0.0135 '/' Cc= 0.90)0			
			n= 0	.013, Flow Area=	1.23 sf					
#2	Device 1	500	0.00' 1.0''	Vert. Orifice/Grat	e C= 0.600 Lin	nited to weir flow at lov	w heads			
#3	Device 1	502	2.00' 24.0'	' x 24.0'' Horiz. O	rifice/Grate C= (0.600				
			Limit	ed to weir flow at	low heads					
Primary	Primary OutFlow Max=0.03 cfs @ 24.17 hrs HW=501.56' TW=498.11' (Dynamic Tailwater)									

-1=Culvert (Passes 0.03 cfs of 9.22 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.03 cfs @ 5.93 fps)

-3=Orifice/Grate (Controls 0.00 cfs)

Summary for Subcatchment 1S: REMAINDER FLOW TO CB3P

Runoff = 0.06 cfs @ 13.94 hrs, Volume= 0.036 af, Depth= 0.18"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 50YR Rainfall=5.87"

KEARSARGE MTN RD WARNER POST 7-23-24 - Copy

Prepared by HP HydroCAD® 10.10-4a s/n 11004 © 2020 HydroCAD Software Solutions LLC

_	Ai	rea (sf)	CN	Description									
*		2,004	98	Existing roa	dway, HSG	à A							
		35,850	39	>75% Gras	s cover, Go	od, HSG A							
		64,959	30	Woods, Go	/oods, Good, HSG A								
	1	02,813	34	Weighted A	verage								
100,809 98.05% Pervious Ar					vious Area								
		2,004		1.95% Impe	ervious Area	a							
	Tc	Length	Slope	e Velocity	Capacity	Description							
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)								
	10.9	100	0.1300	0.15		Sheet Flow, WOODS							
						Woods: Light underbrush n= 0.400 P2= 2.76"							
	8.1	646	0.0710	0 1.33		Shallow Concentrated Flow, WOODS							
						Woodland Kv= 5.0 fps							
	0.1	45	0.0200	0 6.13	24.53	Parabolic Channel, ROADSIDE SWALE							
						W=6.00' D=1.00' Area=4.0 sf Perim=6.4'							
						n= 0.025 Earth, clean & winding							
	19.1	791	Total										

Summary for Pond 2P: CATCH BASIN

Inflow Area	a =	5.689 ac, 1	1.43% Impervio	us, Inflow	Depth > 0	.21" for 50	YR event
Inflow	=	0.09 cfs @	13.90 hrs, Volu	me=	0.100 af		
Outflow	=	0.09 cfs @	13.97 hrs, Volu	me=	0.100 af	, Atten= 0%,	Lag= 3.9 min
Discarded	=	0.04 cfs @	13.97 hrs, Volu	me=	0.066 af		
Primary	=	0.06 cfs @	13.97 hrs, Volu	me=	0.033 af		

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 484.41' @ 13.97 hrs Surf.Area= 0.012 ac Storage= 0.002 af Flood Elev= 488.00' Surf.Area= 0.010 ac Storage= 0.019 af

Plug-Flow detention time= 18.5 min calculated for 0.099 af (100% of inflow) Center-of-Mass det. time= 16.4 min (1,294.7 - 1,278.3)

Volume	Invert	Avail.Storage	Storage Description
#1	484.00'	0.017 af	6.00'W x 75.00'L x 4.00'H Prismatoid
#2	484.25'	0.002 af	0.041 af Overall x 40.0% Voids 15.0'' Round Pipe Storage L= 75.0'
		0.019 af	Total Available Storage
Device	Routing	Invert Ou	utlet Devices
#1	Primary	484.30' 15 Inl n=	5.0" Round Culvert L= 50.0' CPP, square edge headwall, Ke= 0.500 let / Outlet Invert= $484.30' / 483.80'$ S= 0.0100 '/' Cc= 0.900 = 0.010 PVC, smooth interior. Flow Area= 1.23 sf
#2	Discarded	484.00' 3. (000 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.04 cfs @ 13.97 hrs HW=484.41' (Free Discharge)

Primary OutFlow Max=0.06 cfs @ 13.97 hrs HW=484.41' TW=0.00' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 0.06 cfs @ 1.12 fps)

Summary for Subcatchment 2S: FLOW TO WETLAND

Runoff = 0.14 cfs @ 15.14 hrs, Volume= 0.089 af, Depth= 0.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 50YR Rainfall=5.87"

Ar	ea (sf)	CN	Adj Desc	ription						
	2,004	98	Unco	onnected ro	ofs, HSG A					
	1,076	98	Pave	d parking,	HSG A					
	20,000	39	>75%	6 Grass cov	ver, Good, HSG A					
	45,170	30	Woo	Voods, Good, HSG A						
	85,506	39	>75%	75% Grass cover, Good, HSG A						
1	61,412	30	Woo	ds, Good, F	HSG A					
3	15,168	34	33 Weig	hted Avera	age, UI Adjusted					
3	312,088 99.02% Pervious Area									
	3,080 0.98% Impervious Area									
	2,004		65.06	5% Unconn	ected					
Тс	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
13.3	100	0.0800	0.13		Sheet Flow,					
					Woods: Light underbrush n= 0.400 P2= 2.76"					
9.5	900	0.1000	1.58		Shallow Concentrated Flow,					
					Woodland Kv= 5.0 fps					
12.4	365	0.0010	0.49	10.99	Trap/Vee/Rect Channel Flow,					
					Bot.W=30.00' D=0.50' Z= 30.0 '/' Top.W=60.00'					
					n= 0.050					
35.2	1,365	Total								

Summary for Subcatchment 3S: FLOW TO POND

Runoff = 0.61 cfs @ 12.45 hrs, Volume= 0.119 af, Depth= 0.57"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 50YR Rainfall=5.87" KEARSARGE MTN RD WARNER POST 7-23-24 - Copy

Prepared by HP HydroCAD® 10.10-4a s/n 11004 © 2020 HydroCAD Software Solutions LLC

_	A	rea (sf)	CN	Description								
		2,004	98	Roofs, HSG	ìΑ							
*		6,098	98	Paved road	way, HSG /	Α						
		3,615	98	Paved park	ved parking, HSG A							
		53,013	39	>75% Gras	75% Grass cover, Good, HSG A							
		43,821	30	30 Woods, Good, HSG A								
	108,551 42 Weighted Average											
		96,834		89.21% Per	vious Area							
		11,717		10.79% Imp	pervious Are	ea						
	Tc	Length	Slop	e Velocity	Capacity	Description						
_	(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)							
	14.0	100	0.070	0 0.12		Sheet Flow,						
						Woods: Light underbrush n= 0.400 P2= 2.76"						
	0.7	90	0.200	0 2.24		Shallow Concentrated Flow,						
						Woodland Kv= 5.0 fps						
	0.1	25	0.330	0 4.02		Shallow Concentrated Flow,						
						Short Grass Pasture Kv= 7.0 fps						
	2.2	412	0.030	0 3.13	9.39	Trap/Vee/Rect Channel Flow,						
						Bot.W=0.00' D=1.00' Z= 3.0 '/' Top.W=6.00'						
_						n= 0.050						

17.0 627 Total

Summary for Pond 4P: MICRO POOL POND 2

Inflow Area	a =	3.161 ac, 1	8.40% Impe	ervious,	Inflow E	Depth >	0.46"	for 50Y	R event
Inflow	=	0.86 cfs @	12.10 hrs,	Volume	=	0.121	af		
Outflow	=	0.03 cfs @	25.97 hrs,	Volume	=	0.053	af, Atte	n= 96%,	Lag= 832.3 min
Primary	=	0.03 cfs @	25.97 hrs,	Volume	=	0.053	af		

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 488.25' @ 25.97 hrs Surf.Area= 1,798 sf Storage= 2,949 cf

Plug-Flow detention time= 740.1 min calculated for 0.053 af (44% of inflow) Center-of-Mass det. time= 359.7 min (1,508.2 - 1,148.5)

Volume	Invert Ava	il.Storage	Storage	e Description	
#1	484.00'	4,477 cf	Custor	n Stage Data (Pris	smatic) Listed below (Recalc)
Elevation (feet)	Surf.Area (sq-ft)	Inc (cubic	.Store c-feet)	Cum.Store (cubic-feet)	
484.00	80		0	0	
486.00	460		540	540	
486.90	750		544	1,084	
487.00	1,051		90	1,175	
488.00	1,633		1,342	2,517	
489.00	2,288		1,961	4,477	

KEARSARGE MTN RD WARNER POST 7-23-24 - Copy

HydroCAD® 10.10-4a s/n 11004 © 2020 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	484.80'	15.0" Round Culvert L= 46.7' Ke= 0.500
	-		Inlet / Outlet Invert= 484.80' / 484.40' S= 0.0086 '/' Cc= 0.900
			n= 0.013, Flow Area= 1.23 sf
#2	Device 1	487.00'	1.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Device 1	488.25'	24.0'' x 24.0'' Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=0.03 cfs @ 25.97 hrs HW=488.25' TW=484.26' (Dynamic Tailwater) 1=Culvert (Passes 0.03 cfs of 9.87 cfs potential flow) 2=Orifice/Grate (Orifice Controls 0.03 cfs @ 5.30 fps)

-3=Orifice/Grate (Weir Controls 0.00 cfs @ 0.16 fps)

Summary for Subcatchment 4S: FLOW TO CB 2P

Runoff = 0.08 cfs @ 12.14 hrs, Volume= 0.010 af, Depth= 0.75"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 50YR Rainfall=5.87"

	Ar	ea (sf)	CN	Description				
*		972	98	Paved road	way, HSG	4		
		4,670	39	>75% Grass	75% Grass cover, Good, HSG A			
		1,650	30	Woods, Goo	od, HSG A			
		7,292	45	Weighted Average				
		6,320		86.67% Pervious Area				
		972		13.33% Imp	ervious Ar	ea		
	Тс	Length	Slop	e Velocity	Capacity	Description		
(m	nin)	(feet)	(ft/1	t) (ft/sec)	(cfs)			

6.0

Prepared by HP

Direct Entry,

Summary for Reach 5R: ROADSIDE DITCH

Inflow .	Area	=	2.823 ac, ⁻	15.41% Imp	ervious,	Inflow	Depth >	0.2	4" for 50	YR event	
Inflow		=	0.03 cfs @	24.17 hrs,	Volume	=	0.057	af			
Outflov	N	=	0.03 cfs @	24.22 hrs,	Volume	=	0.057	af, A	Atten= 0%,	Lag= 2.7	7 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Max. Velocity= 0.90 fps, Min. Travel Time= 3.4 min Avg. Velocity = 0.87 fps, Avg. Travel Time= 3.5 min

Peak Storage= 7 cf @ 24.22 hrs Average Depth at Peak Storage= 0.11', Surface Width= 0.66' Bank-Full Depth= 1.00' Flow Area= 3.0 sf, Capacity= 11.71 cfs

0.00' x 1.00' deep channel, n= 0.050 Side Slope Z-value= 3.0 '/' Top Width= 6.00' Length= 180.0' Slope= 0.0467 '/' Inlet Invert= 498.00', Outlet Invert= 489.60' KEARSARGE MTN RD WARNER POST 7-23-24 - Copy Prepared by HP Type III 24-hr 50YR Rainfall=5.87" Printed 7/24/2024 Page 37

HydroCAD® 10.10-4a s/n 11004 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 5S: TO LOWER POND

Runoff = 0.86 cfs @ 12.10 hrs, Volume= 0.064 af, Depth= 2.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 50YR Rainfall=5.87"

Area (sf)	CN Description
8,362	39 >75% Grass cover, Good, HSG A
6,389	98 Paved parking, HSG A
14,751	65 Weighted Average
8,362	56.69% Pervious Area
6,389	43.31% Impervious Area
To Loweth	
(min) (foot	(ft/ft) (ft/soc) (cfc)
) (1011) (103ec) (03) Direct Entry
0.0	Direct Linky,
	Summary for Pond 6P: EXISTING EXTENDED CULVERT
Inflow Area –	2,360 ac 1,95% Impervious Inflow Depth = 0,18" for 50YB event
Inflow =	0.06 cfs @ 13.94 hrs. Volume = 0.036 af
Outflow =	0.06 cfs @ 13.95 hrs, Volume= 0.036 af, Atten= 0%, Lag= 0.6 min
Primary =	0.06 cfs @ 13.95 hrs, Volume= 0.036 af
Routing by Dyn-	Stor-Ind method, Time Span= $1.00-36.00$ nrs, $dt = 0.05$ nrs
reak Liev= 407	.34 @ 13.95 mis Sun.Area= 42 Sr Storage= 0 Cr
Plug-Flow deter	tion time= 2.1 min calculated for 0.036 af (100% of inflow)
Center-of-Mass	det. time= 1.6 min (1,045.3 - 1,043.7)
Volume Ir	vert Avail.Storage Storage Description
#1 487	7.73' 1,003 cf Custom Stage Data (Prismatic) Listed below (Recalc)
Elevation	Surf Area Inc Store Cum Store
(feet)	(sa-ft) (cubic-feet) (cubic-feet)
487.73	$12 \qquad 0 \qquad 0$
488.00	50 8 8
490.00	945 995 1,003
Device Routin	g Invert Outlet Devices
#1 Prima	y 487.83' 15.0'' Round Culvert L= 62.0' Ke= 0.500
	Inlet / Outlet Invert= 48/.83' / 484.40' S= 0.0553 '/' Cc= 0.900
	II = 0.013, FIOW Area = 1.23 SI

Primary OutFlow Max=0.06 cfs @ 13.95 hrs HW=487.94' TW=484.41' (Dynamic Tailwater)

Summary for Subcatchment 7S: TO INLET PIPE

Runoff = 0.98 cfs @ 12.10 hrs, Volume= 0.072 af, Depth= 2.61"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 50YR Rainfall=5.87"

A	rea (sf)	CN	Description			
	7,233	98	Paved parking, HSG A			
	7,166	39	>75% Grass cover, Good, HSG A			
	14,399	69	Weighted Average			
	7,166		49.77% Pervious Area			
	7,233		50.23% Impervious Area			
Tc (min)	Length	Slop	be Velocity Capacity Description			

6.0

Direct Entry,

Summary for Pond 8P: CULVERT

Inflow Area	a =	0.331 ac, 5	50.23% Imperviou	s, Inflow Depth =	2.61" for	^r 50YR event
Inflow	=	0.98 cfs @	12.10 hrs, Volun	ie= 0.072	2 af	
Outflow	=	0.98 cfs @	12.11 hrs, Volun	ie= 0.066	af, Atten=	1%, Lag= 0.7 min
Primary	=	0.98 cfs @	12.11 hrs, Volun	ie= 0.066	6 af	

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 501.56' @ 24.10 hrs Surf.Area= 250 sf Storage= 253 cf

Plug-Flow detention time= 45.3 min calculated for 0.066 af (92% of inflow) Center-of-Mass det. time= 4.5 min (846.2 - 841.7)

Volume	Inv	ert Avail.St	orage Storag	ge Description	
#1	499.	40'	253 cf Custo	om Stage Data (Prismatic) Listed below (Recalc)	
Elevatic (fee	on et)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
499.4 500.0 501.0	40 00 00	25 150 250	0 53 200	0 53 253	
Device	Routing	Inver	t Outlet Devid	ices	
#1	Primary	499.40	" 15.0" Roun Inlet / Outlet n= 0.013, F	nd Culvert L= 80.0' Ke= 0.500 et Invert= 499.40' / 499.00' S= 0.0050 '/' Cc= 0.900 Flow Area= 1.23 sf	

Primary OutFlow Max=0.96 cfs @ 12.11 hrs HW=499.94' TW=499.17' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 0.96 cfs @ 2.81 fps)

Summary for Link POA1: POA1 AT KEARSARGE MTN RD

Inflow Are	a =	5.689 ac, 1	1.43% Imp	ervious,	Inflow	Depth =	0.0	7" for 50	YR event	
Inflow	=	0.06 cfs @	13.97 hrs,	Volume	=	0.033	af			
Primary	=	0.06 cfs @	13.97 hrs,	Volume	=	0.033	af, J	Atten= 0%,	Lag= 0.0	min

Primary outflow = Inflow, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Summary for Link POA2: AT WETLAND

Inflow A	rea =	7.235 ac,	0.98% Impervious,	Inflow Depth = 0	.15" for 50YR event
Inflow	=	0.14 cfs @	15.14 hrs, Volume	= 0.089 af	
Primary	=	0.14 cfs @	15.14 hrs, Volume	= 0.089 af	, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

STORMWATER MANAGEMENT REPORT Residential Subdivision Kearsarge MT. Road Warner NH

OPERATION AND MAINTENANCE PLAN

STORM-WATER OPERATION AND MAINTENANCE MANUAL

PROPOSED RESIDENTIAL DEVELOPMENT KEARSARGE MOUNTAIN ROAD WARNER, NH

February 21, 2024

Owner: Sydney Elizabeth Boyer Kearsarge Mountain Road Warner NH 03278

The responsibility of the maintenance and management of the storm-water facilities is the <u>"owner of record"</u>

This manual has been prepared in order to assist in the long term functionality of the storm-water system.

The owner is responsible to construct and maintain the storm-water system in accordance with the approved subdivision plan, and for implementing the requirements of this document. The approved plan is considered to be part of this manual.

This site utilizes forebays, stone lined and grass lined swales, deep sump catch basins and two micro pool extended detention ponds to mitigate the storm-water associated with the building and roadway design.

Owner:	Sydney Elizabeth Boyer
	Kearsarge Mountain Road
	Warner NH 03278

Responsibility: The storm water management facilities proposed to be constructed on the site located off of Kearsarge Mountain Road in Warner NH will remain under the ownership as described above. The owner will be responsible for the continued maintenance of the drainage features particular to this development.

1. Inspection & Maintenance Schedule The storm water management systems on the project consist of a number of different drainage management systems that need to be addressed. The systems on the proposed site consist of one infiltration pond, and two forebays.

Inspections

All of the system's elements must be inspected after a heavy rain storm event. As well as:

- <u>Micro pool extended detention ponds</u> should be inspected after major storms and every 6 months for accumulated debris and siltation within the basin as well as debris accumulation on the over flow weir. Woody and herbaceous vegetation should be removed from the rock rip rap with the basin annually. Embankments and slopes will be mowed and woody and herbaceous vegetation shall be removed. Outlet control devices and grates to be inspected for debris and clogging.
- swales will
- within the basin or swale as well as debris accumulation on the over flow weir. Woody and herbaceous vegetation shall be removed from swale annually. Embankments and slopes will be mowed and woody and herbaceous vegetation shall be removed. be inspected after major storms and every 6 months for accumulated debris and siltation

- **Forebays** should be inspected after major storms and every 6 months for accumulated sediment and debris. Grass and woody vegetation should be removed from the forebay annually. Staff gage or other measuring device shall be installed to indicate the depth of the sediment.
- <u>Catch Basins, Drainage Manholes, Pipes and Outlets</u> Remove accumulated sediment from the structures and the outlets every year during late winter or early spring. Accumulated sediment shall be disposed of off-site in accordance with applicable local, State and/or Federal guidelines

Maintenance

Sediment and Debris found in any of the storm water management system elements shall be immediately removed and disposed of in a manner consistent with all state and local permits. Wherever damage to slopes, lawns or basins is discovered, such damage shall be repaired immediately, in addition a regular schedule of maintenance shall be followed:

Good Housekeeping

Sanding of drives and walks to be performed as needed, excess sanding to be minimized. Salting to be restricted to potassium chloride only.

Drives & Parking Areas – Remove accumulated sand in the spring of each year. Provide for sweeping of drives at least twice every year in addition to the spring cleaning. Accumulated sediment shall be disposed of to prevent accumulation in the storm water management systems.

Lawns and landscaped areas to be well maintained fall leaves and heavy clippings as well as any loose landscape materials to be raked up and removed to prevent clogging of inlets grates, deep sumps and stone.

Owner:	Sydney Elizabeth Boyer
	Kearsarge Mountain Road
	Warner NH 03278

MAINTENANCE LOG

Any required or completed maintenance is to be recorded and maintained with this manual for perpetuity.

Annually, copies of the completed maintenance logs are to be provided to the Town of Loudon and the Department of Public Works.

Micro pool extended Detention ponds Maintenance Required:	Mow embankments at least annually to control woody vegetation Remove debris inspect overflow and inlet.
	Work performed by:
Maintenance Competed:	
	Date Completed:
Swales:	
Maintenance Required:	
	Control woody vegetation Remove debris and sediment, mow embankments Remove accumulated sediment.
Maintenance Competed: V Date Completed:	Vork performed by:
Forebays:	
Maintenance Required:	
	Control woody vegetation Remove debris and sediment, Install gage / measuring device to indicate sediment depth Remove accumulated sediment.
Maintenance Competed: V Date Completed:	Vork performed by:

Catch Basins, Drainage Manholes, Pipes and Outlets:

.

Maintenance Required:

> Remove accumulated sediment from the structures and the outlets every year during late winter or early spring. Accumulated sediment shall be disposed of off-site in accordance with applicable local, State and/or Federal guidelines

Maintenance Competed: Work performed by: ______ Date Completed: ______

Good Housekeeping Practices:

Maintenance Required:

Roadways – Sweeping of drives. Fall and Spring clean up

Maintenance Competed: Work performed by: _____

Date Completed:

DRAINAGE AREA PLANS